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Abstract 

Open Source Software (OSS) is updated regularly to meet the requirements posed by the customers. 
The source code of OSS undergoes frequent change to diffuse new features and update existing features 
in the system, providing a user friendly interface. The source code changes for fixing bugs and meeting 
user end requirements again affects the complexity of the code change and creates bugs in the software 
which are accountable to the next release of software. In this paper, the complexity of code changes in 
various Bugzilla open source software releases, from version 2.0 on 19th Sep, 1998, to 5.0.1 on 10th Sep, 
2015, bugs in each software version release, and the time of release of each software version are 
considered, and the data used to predict the next release time. The Shannon entropy measure is used to 
quantify the code change process in terms of entropy for each software release. Observed code changes 
are utilized to quantify them into entropy units and are further used to predict the next release time. A 
neural network-based regression model is used to predict the next release time. The performance is 
compared with the R measure calculated using the multi linear regression model, and a goodness of fit 
curve is produced. 
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Introduction 

Open Source Software (OSS) is popular amongst academicians and has targeted consumers in large 
industries. OSS is highly successful, but source code changes have to be made frequently in line with the 
increasingly higher demand on the customer’s end.  

The open source community is growing on a high scale, and various kinds of supports are provided 
by the OSS community, investors participate in the OSS industry by supporting ongoing projects 
financially, considering high income returns and new project development. 

The release time of software in OSS is highly anticipated. However, it is not always possible to 
achieve the release of software at the defined timeline. This aspect is a matter to be explored in order to 
allow increased accuracy in the anticipation of OSS release time. Ngo-The [19] stated that software 
release planning targets the features that customers acknowledge during feedback processes, the 
requirements of the customers are addressed in the software release, with new features infused into a 
series of new product releases. Constraints, such as resources, revenue prediction, and risk needed to be 
managed so as to maximize profits and customer satisfaction, affect the next release time of software.  

Glance [8] noted that Linux kernel releases depend on the separate testing of their submitted code, 
individually performed, and the final testing is done by users after the release of the software version. It 
has not yet been established what the criterion for the release time should be, though few projects have 
organized patterns for the next releases of the software. 
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In closed source projects, the release dates are fixed at the initial stage of the project, and 
consequent releases are based on the bugs fixed and the features introduced as per requirements. OSS has 
frequent releases, which are related to the goal achievement and are determined based on the changes in 
the source code and the bugs fixed. Project managers have deadlines to be followed in order to release the 
software on time with a profitable budget. However, as software grows in complexity, it becomes difficult 
to control and, thus, affects the release times, and sometimes delays project releases. 

Entropy is an important basic concept of information theory, which follows a probabilistic approach 
and is centered mainly on measuring uncertainty in the system. Complexity of code change is measured 
using entropy-based metrics, as stated by Hassan [10] in his landmark research paper. New feature 
implementations are done in each consequent release in order to develop projects. Bugs are introduced in 
the project as the complexity of projects increases, due to frequent code change processes. Debuggers 
help in discovering bugs and resolve bug issues in released OSSs. To study the next release problem, 
here, the Bugzilla OSS is considered, which has had over 150 releases, starting from 1998 until 
September, 2015. This complexity of the code change for each release is evaluated using entropy-based 
metrics, and the bugs present in each software release are recorded, along with the period of each release. 
These are applied to neural network regression to estimate the next release time of software; also, the 
performance is compared with the R estimate, calculated with the multi linear regression method. This 
method of neural network-based regression is a novel approach, and has not yet been used to predict 
release time. Bugzilla releases, the complexity of code change for each release version, and bugs in each 
release are considered and are used as inputs for predicting the next release time. 
 
Literature review 

Various customer demands are diffused in new releases of software. It is important to address the 
requirements reported by users in the inclusion of new features or the updating of existing ones. OSS 
projects keep releasing new software versions frequently, trying to fulfil user requirements. In 2010, 
Hassan [10] applied information theoretic concepts in quantifying the amount of code change in terms of 
Shannon’s entropy rule, the concept was there used in the prediction of bugs. Jain et al. [11] utilized the 
mean length, termed ‘useful’ codes, coined by Gsiasu and Picard, to provide generalizations of ‘useful’ 
mean length and, hence, to prove noiseless coding theorem using it. Singhal et al. [17] proposed and 
characterized the generalized entropy measure of relative information with preference, the particular case 
of measures was proved. Singh et al. [15] applied Simple Linear Regression using complexity of code 
change and detected bugs in order to anticipate future bugs. Xuan et al. [23] addressed the next release 
problem using Backbone-based Multilevel Algorithm (BMA). BMA can be applied to get better result in 
large scale NRP, it can reduce the scale of the problem and build an optimal solution. D’Ambros et al. [5] 
compared bug prediction methods extensively, and set a benchmark in fault prediction. Singh et al. [16] 
applied support vector regression in predicting the bugs, using an entropy measure in the system for a set 
duration of time. Garzarelli [7] explained the organizational structure of OSS, and that it works without 
any ownership or hierarchy. 

Bagnall et al. [1] modeled the problem of optimal next release as NP-Hard in his work, and coined 
the term ‘Next Release Problem’. Greer et al. [9] utilized a genetic algorithmic approach in optimizing 
the release time of software versions. Garey et al. [6] suggested that the required number of next releases 
can never be estimated exactly through any algorithm in a polynomial period of time. Cheng et al. [3] 
suggested that, with ever increasing user requirements, it is difficult to decide on optimized costs for new 
releases of products. Ngo-The et al. [19] combined integer programming with 2-phased optimization to 
release search space and used genetic programming to minimize search space. Baker et al. [2] addressed 
the next release problem, utilizing the greedy and simulating annealing algorithm. Jiang et al. [12] 
designed the Hybrid Ant Colony Optimization algorithm (HACO) to solve the next release problem, and 
concluded that HACO gives better results than the existing GRASP and simulated annealing algorithm. 
Kapur et al. [13] proposed a method for the release time problem utilizing reliability, bugs fixed, and cost. 
Chaturvedi et al. [4] utilized complexity of code change and bugs in estimating the next release time of 
software. 
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The paper is organized into 7 sections, Section 2 illustrates the related work. Section 3 describes the 
code change process used in this paper to quantify changes in code in terms of entropy, and illustrates the 
basic model for entropy calculation. Section 4 explains data collection and the method of processing the 
data. Section 5 describes the neural network-based regression model and the multi linear regression model 
used to predict the next release time of the Bugzilla OSS. Section 6 describes the results and discusses 
them. The paper is concluded with Section 7. 

 
Code change process 

The Code change procedure represents the patterns of modifications made to source code. The 
modification in the code is carried out by the developer, due to the introduction of new features, to the 
modification of existing features, or to fixing bugs. The changes in the code for the above-stated reasons 
make source codes complex and, thus, leads to the introduction of new faults in the system. There may be 
a delay in the next release of software if the software developer fails to understand the code change 
process appropriately. It may also affect the quality of the software system. The code change procedure is 
recorded in big CVS repositories to manage it correctly. There are 3 types of modification process, 
following Hassan [10]. Fundamental code change technique evaluates examples of changes, as opposed to 
measuring the quantity of changes, or measuring the impact of changes to the code structure. The 
progressions are recorded, taking into account the quantity of times the document is adjusted. These 
progressions are measured at the document level, rather than at the code level. 

Entropy is ascertained in view of the quantity of changes in a record for particular periods. The 
period can be taken over a day, week, month, year, or so on, in light of the aggregate length of time of the 
venture and, in addition, the quantity of changes happens in the framework. At the Broadened Code 
Change (BCC) level, instead of utilizing a settled length period, the fundamental code change is 
augmented in light of a variable length period. This time period can be isolated in 3 ways, i.e., time-based 
periods, change breaking point-based periods, and burst-based periods. In time-based periods, the 
downright length of the task is separated into an equivalent length span. These allotments can be of any 
length. In change breaking point-based periods, the periods are decided in light of the equivalent number 
of alterations. The progressions do not take after a particular example; instead, it, by and large, takes after 
the burst-based examples. The burst-based period depends on examples of the progressions happening in 
the undertaking, rather than in the period-based or change breaking point-based periods. The files which 
are changed during the high complexity leads to the introduction of new faults in the system. 

 
Complexity of code change 
Shannon [18], in 1948, introduced the concept of entropy, also known as the “measure of 

uncertainty”, to information theory, attributed to his research work “A mathematical theory of 
communication ”, popularly known as Shannon’s Entropy, it was described as; 
 

𝐻𝑛(P) = −�(𝑃𝑖 ∗ 𝑙𝑜𝑔2𝑃𝑖)
𝑛

𝑖=1

 
 

(1) 

 
where 𝑃𝑖 ≥ 0 and  ∑ 𝑃𝑖𝑛

𝑖=1 . 
 
The probability 𝑃𝑖 is a number alteration in the ith file in a particular time period by the total number 

of changes in all the files in a considered period of time. The  entropy measure as defined by Shannon is 
non-negative, permutationally symmetric, and additive. Also, it is continuous in 0 < 𝑃𝑖 < 1. Entropy is at 
maximum when all events are equally likely to occur, i.e., 𝑃𝑖=

1
𝑛
, ∀ 𝑖 ∈ 1,2,3, … … .𝑛 , when each event has 

a maximum probability of occurrence, i.e., 𝑃𝑖 = 1 and ∀ 𝑖 ≠ 𝑚,𝑃𝑚 = 0, then the entropy is at minimum.  
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As the size of each file differs in software systems. Shannon’s Entropy 𝐻𝑛 measure is normalized 
such that 0 ≤ 𝐻𝑛 ≤ 1 enables the comparison of entropy measures of distributions of variant sizes, over 
different time periods. 

 

𝐻𝑛(𝑃) =   
1

𝑀𝑎𝑧𝑖𝑚𝑢𝑚 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑓𝑜𝑟 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛
∗ 𝐻𝑛(𝑃) (2) 

   =   1
𝑙𝑜𝑔2𝑛

∗ 𝐻𝑛(𝑃) = - 1
𝑙𝑜𝑔2𝑛

∗ ∑ (𝑃𝑖 ∗ 𝑙𝑜𝑔2𝑃𝑖)𝑛
𝑖=1  

 

    =  −∑ (𝑃𝑖 ∗ 𝑙𝑜𝑔𝑛𝑃𝑖)𝑛
𝑖=1  

 

where 𝑃𝑖 ≥ 0∀ 𝑖 ∈ 1,2,3, … … .𝑛  and  ∑ 𝑃𝑖𝑛
𝑖=1 = 1 

 
To study code change process information, a theoretic approach to evaluate complexity/uncertainty 

could be employed. To calculate the complexity of code change in a set of files for a specific period of 
time (year, half year, month, etc.,), the probability of each file is calculated and, thereafter, entropy is 
calculated using Shannon’s entropy measure. 
 
 
Table 1 Changes in File1, File2, File3, and File4, with respect to time period t1, t2 and t3. 

 
File1    
File2    
File3    
File4    

 t1 t2 t3 

 
 

Consider a system with 4 files, in which changes have occurred over a period of time, these changes 
are noted in Table 1 with star marks. Let there be a total of 17 changes in all 4 files. For each file, the 
number of changes in a file is divided by the total changes in all the files over the particular time period. 
For time period t1, file1 has 2 changes, file2 has 1 change, file3 has 1 change, and file4 has one change. 
So, the probability of file1 for t1 is 2/5 = 0.4, of file2 for t1, 1/5 = 0.2, of file3 for t1, 1/5 = 0.2 and of 
file4 for t1, 1/5 = 0.2. Similarly, the probabilities for each time period could be calculated and, thus, 
entropy/complexity of code change for each time period can be calculated. When there are changes in all 
files, the entropy would be maximum, while it would be minimum for most changes occurring in a single 
file. 
 
Data collection and methodology 

Bugzilla [20] is the world’s leading free bug-tracking system software; it tracks bugs, communicates 
with teammates, and manages quality assurance. Bugzilla, unlike its counterparts, is free, and allows 
developers to follow all bug issues in their projects easily. It is under constant development, and has a 
dedicated team. It offers many features to the users, such as automatic duplicate bug detection, reports 
and charts, bug lists in multiple formats, the option to file/modify bugs by email, etc.; also, it offers 
excellent features to administrators, such as the ability to impersonate users, excellent security, multiple 
authentication methods, and compatibility with many operating systems. It is mainly used by deployment 
managers in chip design problem tracking, software bug tracking, and system administration. Many 
different organizations and projects use Bugzilla, the Bugzilla website lists 136 different companies 
which use public Bugzilla installation and utilize its bug tracking feature, such as Mozilla, GNOME, 
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W3C, LibreOffice, GCC, Linux kernel, Open Office, Scilab, Eclipse, Red Hat, KDE, Novell Inc., North 
Carolina State University LUG, and Apache Project. The Bugzilla project began in September, 1998, 
under the name Netscape, with its first release version 2.0, and up to now has had 150 releases, the latest 
release is 5.0.1, which was released on 10th September 2015. The date is collected from Bugzilla website 
for each software version release, the number of files in each software version release is observed, and 
changes in the code in each file are recorded; hence, the complexity of code change, as stated by Hassan 
[10], is calculated for each release. The collected data is processed on a monthly basis, and the changes in 
each release are arranged month wise; thus, entropy is calculated for each release on a monthly basis. 
Additionally, the bugs and total changes in each release are recorded. A snapshot from the Bugzilla 
repository for the Bugzilla-4.4.1 version release, depicting the bugs and other changes, along with the 
dates of the changes of code, is shown in Figure 1. 
 
 

 
 
Figure 1 Snapshot of reported bugs for Bugzilla-4.4.1 version. 
 
 

Data has been prepared according to the following rules: 
• Bugzilla software versions release dates are noted from the website. 
• All the reported logs are noted from each version, along with the date of change. 
• Corresponding to each version, changes in the code are noted from the website for each reported 

bug/modification/new feature addition. 
• The total number of changes in each version are recorded. 
• Bugs are noted separately for each software version 
• In each version, the changes are arranged month-wise and, hence, complexity of code change is 

also calculated monthly for each release. 
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The time for each release is also calculated in months. 
 

 

 
 
Figure 2 Process of extracting data from resources. 

 
 
We have calculated the code change complexity, following the method described in section 3.1, and 

bugs in each release of the Bugzilla OSS and, thus, predicted the next release time of software. Neural 
network regression is applied to predict the next release time. Table 2 consists of the entirety of the 
software versions, with their release dates and complexity of code changes in each release, and contains 
the number of files from which total changes in the version, in terms of code, is recorded. The code 
changes in each file is taken into consideration to calculate the Complexity of Code Change (COCC), 
using Shannon’s entropy measure, to quantify the code change statistics into entropy units, and Figure 3 
illustrates the bug change patterns in all the releases of the Bugzilla OSS. 
 
 
Table 2 Complexity of code change of various software releases, along with release dates and file 
changes. 
 

SV DOR COCC TNOF NM TC SV DOR COCC TNOF NM TC 

5.0.1 Sep 10, 2015 7.288517 35 2 673 3.2.4 July 8, 2009 1.939635 16 3 210 

5.0 July 7, 2015 2.335229 21 3 286 3.2.3 Mar 30, 2009 1.426524 21 2 312 

4.4.9 Apr 15, 2015 8.931459 17 3 1626 3.2.2 Feb 3, 2009 7.066981 5 2 1926 

4.4.8 Jan 27, 2015 10.07652 5 4 774 3.2 Nov 29, 2008 2.385077 20 4 600 

4.4.6 Oct 6, 2014 4.034633 20 2 728 3.0.5 Aug 12, 2008 3.598072 28 3 277 

4.4.5 July 24, 2014 6.545516 26 3 911 3.0.4 May 4, 2008 8.673146 74 4 4826 

4.4.4 Apr 18, 2014 8.360617 4 3 1542 3.0.3 Jan 8, 2008 3.598054 43 4 917 

4.4.2 Jan 27, 2014 3.296621 24 3 302 3.0.2 Sep 18, 2007 1.29627 22 1 379 

4.4.1 Oct 16, 2013 10.19242 67 5 2418 3.0.1 Aug 23, 2007 8.80902 88 4 1814 

4.4 May 22, 2013 3.539719 36 3 2331 3.0 May 9, 2007 2.994401 46 3 626 
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SV DOR COCC TNOF NM TC SV DOR COCC TNOF NM TC 

4.2.5 Feb 19, 2013 5.795435 23 3 943 2.22.2 Feb 2, 2007 5.583121 48 4 3448 

4.2.4 Nov 13, 2012 6.463577 37 3 576 2.22.1 Oct 15, 2006 12.31643 129 6 4319 

4.2.3 Aug 30, 2012 3.453316 24 1 413 2.22 Apr 22, 2006 4.007161 88 2 2427 

4.2.2 July 26, 2012 5.178797 27 3 382 2.20.1 Feb 20, 2006 9.005605 125 5 4067 

4.2.1 Apr 18, 2012 5.30215 50 2 1833 2.20 Sep 30, 2005 5.234618 60 3 1595 

4.2 Feb 22, 2012 1.757591 10 1 234 2.18.3 July 9, 2005 2.713428 3 2 1381 

4.0.4 Jan 31, 2012 2.324726 16 1 500 2.18.1 May 11, 2005 6.489944 60 4 3658 

4.0.3 Dec 28, 2011 5.361164 35 5 898 2.18 Jan 15, 2005 3.787442 123 3 16478 

4.0.2 Aug 4, 2011 5.252608 51 3 1254 2.16.7 Oct 24, 2004 2.85968 10 4 150 

4.0.1 Apr 27, 2011 7.040074 29 2 827 2.16.6 July 10, 2004 2.105117 37 4 42387 

4.0 Feb 15, 2011 1.629479 24 1 342 2.16.5 Mar 3, 2004 2.690757 20 4 378 

3.6.4 Jan 24, 2011 5.377818 26 3 734 2.16.4 Nov 3, 2003 4.153746 34 6 10211 

3.6.3 Nov 2, 2010 5.464644 40 3 891 2.16.3 Apr 25, 2003 1.967222 39 4 30974 

3.6.2 Aug 5, 2010 4.795026 48 1 1353 2.16.2 Jan 2, 2003 2.0 4 3 191 

3.6.1 Jun 24, 2010 6.447155 32 2 850 2.16.1 Sep 30, 2002 1.670795 12 2 189 

3.6 Apr 13, 2010 1.570579 56 1 1135 2.16 July 28, 2002 2.72706 52 2 34010 

3.4.6 Mar 8, 2010 1.645946 27 1 334 2.14.2 Jun 7, 2002 1.200153 17 5 2584 

3.4.5 Jan 31, 2010 1.430351 24 2 43351 2.14.1 Jan 5, 2002 2.784661 175 4 10891 

3.4.4 Nov 18, 2009 4.038138 8 2 323 2.14 Aug 29, 2001 2.343654 134 4 13733
9 

3.4.2 Sep 11, 2009 3.925886 36 1 1506 2.12 Apr 27, 2001 6.349193 298 12 83041 

3.4.1 Aug 1, 2009 2.552273 13 1 509 2.10 May 9, 2000 3.82533 206 6 16151 
 
 

SV~Software Versions, DOR~Date of release,  COCC~Complexity of code change, TNOF~Total 
Number of Files, NOM~Number of Months, TC~Total Changes. 
 

 
Figure 3 Bugs in Bugzilla software releases. 
 

 
Neural network regression and multiple linear regression 

A neural network fitting tool is applied to fit data, using the neural network toolbox in MATLAB 
software. Regression analysis is carried out using complexity of code changes and bugs as predictors for 
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the release time estimation of new releases. Fitting tool ‘nnft’, or neural network fitting tool, is used to 
perform regression on the data, consisting of complexity of code changes, bugs fixed, and time of each 
release in Bugzilla OSS. Complexity of code is calculated for each software release using entropy based 
metrics, as discussed in section 3.1. Data input is selected using the ‘nnft’, it is trained, and the 
performance is evaluated using the neural network-based regression method. The ‘nnft’ creates a 2 layer 
feed forward network with sigmoid hidden neurons and linear output neurons. The neural network is 
trained using the Levenberg-Marquardt back-propagation algorithm, containing 15 hidden neurons. The 
plot of regression is generated by MATLAB software, as shown in Figure 5.  

 
 

 
 
Figure 4 Neural network structure. 
 
 

Multiple linear regression method is used to predict release time, considering the complexity of 
code change (𝑋1) and the bugs fixed (𝑋0) as independent variables, while release time (𝑌0) in months as a 
dependent variable; 

 
𝑌0 = 𝑎 + 𝑏𝑋0 + 𝑐𝑋1 

 
(3) 

where a, b and c are regression coefficients, and values of a, b and c can be estimated using the 
multilinear regression analysis method. After estimating regression coefficients, the next release times of 
software can be predicted. 
 
Results and discussion  

R defines the correlation between the observed and the predicted values. It measures the strength 
and the direction of a linear relationship between 2 variables, and it lies between −1 to 1. The values of R, 
calculated through neural network-based regression and multi linear regression analysis, are depicted in 
Table 3, it is observed that the values of R, as estimated through neural network-based regression, is 0.99, 
while it is 0.98 when estimated through multi-linear regression analysis using SPSS. Hence, it is 
estimated that neural network-based regression provides better results than the multi-linear regression 
analysis method.  
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Figure 5 Neural network regression results for release time prediction model. 

 
 

Table 3 depicts the values of R for neural network-based regression and multi linear regression. 
 
 
Table 3 Parameters of neural network. 
 

Method R 
Neural network regression 0.99 
Multi linear regression 0.98 

 
 

A goodness of fit curve has been plotted between the observed and predicted values, Figure 5 
depicts the fitting between the next release observed value and the next release predicted value. 

 
 

 
Figure 6 Goodness of fit curve for different software release versions. 
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It is observed that the predicted and observed values are almost similar for each software release 
where, in data preparation, we have merged the software releases which were released on the same day. 
The total releases of Bugzilla software number 150 but, as many of them were merged as they had been 
released on the same day, there were few initial releases from our study, as there were no bugs reported in 
them, our study was reduced to a total of 62 observations. The software released which were merged 
together due to having the same release dates are depicted in Table 4. 
 
 
Table 4 Software releases list which have been merged together. 
 
Main SR Merged Software Releases Main SR Merged Software Releases 

5.0.1 4.4.10 4.2.15    3.6.1 3.4.7    
4.4.9 4.2.14 4.0.18    3.4.5 3.2.6 3.0.11   
4.4.8 4.2.13 4.0.17 4.4.7 4.2.12  3.4.4 3.4.3 3.0.10   
4.4.6 4.2.11 4.0.15    3.4.2 3.2.5 3.0.9   
4.4.5 4.2.10 4.0.14    3.4.1 3.4 3.2.6 3.0.11  
4.4.4 4.2.9 4.0.13 4.4.3 4.2.8 4.0.12 3.2.2 3.2.1 3.0.8 3.0.7 2.22.7 
4.4.1 4.2.7 4.0.11    3.2 3.0.6 2.22.6 2.20.7  
4.4 4.2.6     3.0.5 2.22.5    
4.2.5 4.0.10     3.0.4 2.22.4 2.20.6   
4.2.4 4.0.9     3.0.1 2.22.3 2.20.5   
4.2.3 4.0.8     2.22.2 2.20.4    
4.2.2 4.0.7     2.22.1 2.20.3 2.18.6   
4.2.1 4.0.6     2.22 2.20.2    
4.2 4.0.5     2.20.1 2.18.5 2.16.11   
4.0.4 3.6.8     2.20 2.18.4    
4.0.3 3.6.7     2.18.3 2.18.2    
4.0.2 3.6.6     2.18.1 2.16.10 2.16.9   
4.0.1 3.6.5     2.18 2.16.8    
3.6.4 3.4.10     2.16.2 2.14.5    
3.6.3 3.4.9     2.16.1 2.14.4    
3.6.2 3.4.8     2.16 2.14.3    
 
 
Conclusions 

In our paper, we have developed an approach to determine the predicted time of the next release of 
the open source software Bugzilla, using the neural network-based regression method and multi linear 
regression. The data was collected from the Bugzilla website, www.Bugzilla.org, for each software 
release. Code changes in each release were noted and, hence, complexity of code changes were calculated 
for each release using Shannon’s entropy measure, bugs reported in each release were recorded, and time 
of each release was noted. These statistics were used to predict the next release times of Bugzilla software 
versions. Neural network-based regression and multi linear regression were carried out, and the 
performance of both models compared using R statistics, it was found that neural network-based 
regression results were better than those that were produced using the multi linear regression model at 
predicting the release times of software. This study can further be extended by predicting or estimating 
the next release times of software versions using other prediction models and other regression methods. 
Additionally, this method can be applied to predict the next release times of other OSS projects. 
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