Analytical Solution for Three-Dimensional Steady Flow of Condensation Film on Inclined Rotating Disk by Optimal Homotopy Analysis Method

Hany Nasr HASSAN1,* and Mohammad Mehdi RASHIDI2

1Department of Basic Science, Faculty of Engineering, Benha University, Benha, Egypt
2Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran

(*Corresponding author’s e-mail: h_nasr77@yahoo.com)

Received: 1 February 2012, Revised: 24 July 2012, Accepted: 25 June 2013

Abstract

In this paper, the Optimal Homotopy Analysis Method (OHAM) has been used to derive a highly accurate analytic solution for the steady three-dimensional problem of a condensation film on an inclined rotating disk. With a similarity solution method, the governing equations can be reduced to a system of nonlinear ordinary differential equations (ODEs). The control parameter (h) in the HAM is derived by using the averaged residual error method. Using the optimal control parameter provides a superior control on the convergence and accuracy of the analytical solution. The velocity and temperature profiles are shown and the influence of Prandtl number on the temperature profiles is discussed in detail. The validity of the obtained solutions is verified by the numerical results.

Keywords: Homotopy analysis method, optimal convergence-control parameter, series solution, rotating disk, film thickness

Introduction

Most phenomena in our world are essentially nonlinear and are described by nonlinear equations. Some of them are solved using numerical methods and some are solved using the analytical methods of perturbation [1,2]. The numerical methods give the solution at discrete points and thus it is often costly and time consuming to get a complete curve of results and furthermore, stability and convergence should be considered so as to avoid divergence or inappropriate results. In the perturbation methods, one should exert the small parameter in the governing equation. Therefore, finding the small parameter and inserting it into the equation are deficiencies of perturbation methods. One semi-exact method which does not need a small/large parameter is the Homotopy Analysis Method (HAM), first proposed by Liao in 1992 [3]. Liao employed the basic ideas of the homotopy in topology to propose a general analytic method for nonlinear problems, namely the homotopy analysis method. The HAM can overcome the foregoing restrictions and limitations of perturbation methods [4]. The HAM also avoids discretization and provides an efficient solution with high accuracy, minimal calculation and avoidance of physically unrealistic assumptions. More importantly, unlike the perturbation and non-perturbation methods, the HAM provides a simple way to ensure the convergence of series solutions so that one can always get accurate enough approximations even for strongly nonlinear problems. Furthermore, the HAM provides the freedom to choose the so-called auxiliary linear operator so that one can approximate a nonlinear problem more effectively by means of better base functions [5]. The HAM has already been successfully applied to solve many types of nonlinear problems such as the flows of non-Newtonian fluids over a stretching sheet [6,7], unsteady three dimensional flows [8], Jaulent-Miodek equations [9], Burgers and regularized long wave equations [10], two-dimensional viscous flow in a rectangular domain bounded by two moving
porous walls [11], the nonlinear equations arising in heat transfer [12], two-point nonlinear boundary value problems [13], a new technique of using homotopy analysis method for solving high-order nonlinear differential equations [14], prediction of multiplicity of solutions of nonlinear boundary value problems [15], Schrödinger equations [16], simultaneous effects of partial slip and thermal-diffusion and diffusion-thermo on steady magnetohydrodynamic (MHD) convective flow due to a rotating disk [17], analytical solution for off-centered stagnation flow towards a rotating disc problem by the homotopy analysis method with two control parameters [18] and many other problems. Removing a condensate liquid from a cooled, saturated vapor is important in engineering processes. Sparrow and Gregg [19] considered the removal of the condensate using centrifugal forces on a cooled rotating disk. Following von Karman’s [20] study of a rotating disk in an infinite fluid, Sparrow and Gregg transformed the Navier-Stokes equations into a set of nonlinear ordinary differential equations and numerically integrated for the similarity solution for several finite film thicknesses. Their work was extended by adding vapor drag by Beckett et al. [21] and adding suction on the plate by Chary and Sarma [22]. The problem is also related to chemical vapor deposition, when a thin fluid film is deposited on a cooled rotating disk [23]. In this paper, the HAM is applied to find the totally analytical solution for the problem of condensation or spraying on an inclined rotating disk and the obtained solution is compared with the numerical solution. This problem was studied first by Wang [24], and Rashidi et al. [25] who applied the DTM for it; please also see [26,27].

Flow analysis and mathematical formulation

Figure 1 shows a disk rotating in its own plane with angular velocity Ω. The angle between the horizontal axis and disk is β. A fluid film of thickness t is formed by spraying, with a velocity W. We assume the disk radius is large compared to the film thickness such that the end effects can be ignored. Vapor shear effects at the interface of vapor and fluid are usually also unimportant. The gravitational acceleration, \overline{g} acts in the downward direction. The temperature on the disk is T_w and the temperature on the film surface is T_0. Besides, the ambient pressure on the film surface is constant at p_0 and we can safely say the pressure is a function of z only. Neglecting viscous dissipation, the continuity, momentum and energy equations for the steady state are given in the following form;

$$u_x + v_y + w_z = 0,$$ \hspace{1cm} (1)

$$uu_x + vv_y + wu_z = v(u_{xx} + u_{yy} + u_{zz}) + \overline{g} \sin \beta,$$ \hspace{1cm} (2)

$$uu_y + vv_y + wu_z = v(u_{xx} + u_{yy} + u_{zz}),$$ \hspace{1cm} (3)

$$uu_z + vv_y + wu_z = v(u_{xx} + w_{yy} + w_{zz}) - \overline{g} \cos \beta - p_z / \rho,$$ \hspace{1cm} (4)

$$uT_x + vT_y + wT_z = \alpha(T_{xx} + T_{yy} + T_{zz}).$$ \hspace{1cm} (5)

In the above equations, u, v, and w indicate the velocity components in the x, y, and z directions, respectively; T denotes the temperature, ρ, ν and α are the density, kinematic viscosity and thermal diffusivity of the fluid, respectively. Suppressing viscous dissipation, the continuity, momentum and energy equations for the steady state are given in the following form:

$$u = -\Omega y, \quad v = \Omega x, \quad w = 0, \quad T = T_w \quad \text{at} \quad z = 0,$$

$$u_z = 0, \quad v_z = 0, \quad w = -W, \quad T = T_0, \quad p = p_0 \quad \text{at} \quad z = t.$$ \hspace{1cm} (6)

For the mentioned problem, Wang introduced the following transformation [24];
Analytical Solution for Three-Dimensional Steady Flow

Hany N. HASSAN and Mohammad M. RASHIDI

\[u = -\Omega y \eta (\Omega) + \Omega x \eta (\Omega) + \bar{g} k(\eta) \sin \frac{\beta}{\Omega}, \]
\[v = \Omega x \eta (\Omega) + \Omega y \eta (\Omega) + \bar{g} s(\eta) \sin \frac{\beta}{\Omega}, \]
\[w = -2 \sqrt{\Omega \eta} f(\eta), \quad T = (T_0 - T_w) \theta(\eta) + T_w, \]
where \(\eta = z \sqrt{\Omega / v}. \) (7)

Continuity in Eq. (1) is automatically satisfied. Eqs. (2) and (3) can be written as follows;

Figure 1 Schematic diagram of the problem.

\[f'' - \left(f'\right)^2 + g^2 + 2f f'' = 0, \] (9)
\[g'' - 2g f' + 2f g' = 0, \] (10)
\[k'' - k f' + s g + 2f k' + 1 = 0, \] (11)
\[s'' - g k - s f' + 2f s' = 0. \] (12)

If the temperature is a function of the distance \(z \) only, Eq. (5) becomes;

\[\theta'' + 2 Pr f \theta' = 0, \] (13)

where \(Pr = v / \alpha \) is the Prandtl number and \(f, g, k, s \) and \(\theta \) nondimensional functions in \(\eta \) [25]. The boundary conditions for Eqs. (9) - (13) are;

\[f(0) = 0, \quad f'(0) = 0, \quad f'(\delta) = 0, \quad g(0) = 1, \quad g'(\delta) = 0, \quad k(0) = 0, \quad k'(\delta) = 0, \]
\[s(0) = 0, \quad s'(\delta) = 0, \quad \theta(0) = 0, \quad \theta(\delta) = 1, \]
and \(\delta \) is the constant normalized thickness as;
\[\delta = t \sqrt{\frac{\Omega}{v}}. \]

After the flow field is found, the pressure can be obtained by integrating Eq. (4);

\[p(z) = p_0 + \rho \left[v \left(w_z(z) - w_z(t) \right) - \left[w^2(z) - w^2(t) \right] / 2 - g(z-t) \cos \beta \right]. \]

Analytical approximation solutions with the HAM

The basic idea of the HAM, as described in detail by Liao [28], according to the boundary conditions (14) and the rules of the solution expression, we choose;

\[
\begin{align*}
 f_0(\eta) &= \frac{1}{3} (3 \delta \eta^2 - \eta^3), & g_0(\eta) &= 1, & k_0(\eta) &= \frac{1}{2} \left(2 \delta \eta - \eta^2 \right), \\
 s_0(\eta) &= \frac{1}{2} \left(2 \delta \eta - \eta^2 \right), & \theta_0(\eta) &= \frac{\eta}{\delta},
\end{align*}
\]

(17)

as the initial guesses of \(f(\eta), g(\eta), k(\eta), s(\eta) \) and \(\theta(\eta) \), satisfying the boundary conditions (14). The auxiliary linear operators \(L_1, L_2, L_3, L_4 \) and \(L_5 \) are;

\[
\begin{align*}
 L_1(f) &= \frac{\partial^3 f}{\partial \eta^3}, & L_2(g) &= \frac{\partial^2 g}{\partial \eta^2}, & L_3(k) &= \frac{\partial^2 k}{\partial \eta^2}, & L_4(s) &= \frac{\partial^2 s}{\partial \eta^2}, & L_5(\theta) &= \frac{\partial^2 \theta}{\partial \eta^2},
\end{align*}
\]

(18)

which satisfy the following properties;

\[
\begin{align*}
 L_1(c_1 + c_2 \eta + c_3 \eta^2) &= 0, & L_2(c_4 + c_5 \eta) &= 0, & L_3(c_6 + c_7 \eta) &= 0, \\
 L_4(c_8 + c_9 \eta) &= 0, & L_5(c_{10} + c_{11} \eta) &= 0.
\end{align*}
\]

(19)

where \(c_i, i = 1, 2, \ldots, 11 \) are arbitrary constants. Let \(q \in [0,1] \) denotes an embedding parameter, \(h_1, h_2 \) and \(h_3 \) are control nonzero parameters. Then the zeroth-order deformation equations are of the following form;

\[
\begin{align*}
 (1-q) L_1 \left[\hat{f}(\eta; q) - f_0(\eta) \right] &= q h_1 N_1 \left[\hat{f}(\eta; q), \hat{g}(\eta, q) \right], \\
 (1-q) L_2 \left[\hat{g}(\eta; q) - g_0(\eta) \right] &= q h_1 N_2 \left[\hat{f}(\eta; q), \hat{g}(\eta, q) \right], \\
 (1-q) L_3 \left[\hat{k}(\eta; q) - k_0(\eta) \right] &= q h_2 N_3 \left[\hat{f}(\eta; q), \hat{g}(\eta, q), \hat{k}(\eta, q), \hat{s}(\eta, q) \right], \\
 (1-q) L_4 \left[\hat{s}(\eta; q) - s_0(\eta) \right] &= q h_2 N_4 \left[\hat{f}(\eta; q), \hat{g}(\eta, q), \hat{k}(\eta, q), \hat{s}(\eta, q) \right], \\
 (1-q) L_5 \left[\hat{\theta}(\eta; q) - \theta_0(\eta) \right] &= q h_3 N_5 \left[\hat{f}(\eta; q), \hat{\theta}(\eta, q) \right].
\end{align*}
\]

(20) (21) (22) (23) (24)
Subject to the boundary conditions;
\[
\begin{align*}
\hat{f}(0; q) &= 0, \quad \hat{f}'(0; q) = 0, \quad \hat{f}''(\delta; q) = 0, \quad \hat{g}(0; q) = 1, \quad \hat{g}'(\delta; q) = 0, \quad \hat{k}(0; q) = 0, \\
\hat{k}'(\delta; q) &= 0, \quad \hat{s}(0; q) = 0, \quad \hat{s}'(\delta; q) = 0, \quad \hat{\theta}(0; q) = 0, \quad \hat{\theta}(\delta; q) = 1.
\end{align*}
\] (25)

In which we define the nonlinear operators \(N_1, N_2, N_3, N_4\) and \(N_5\) as;
\[
\begin{align*}
N_1 &= \frac{\partial^3 \hat{f}(\eta; q)}{\partial \eta^3} - \left(\frac{\partial \hat{f}(\eta; q)}{\partial \eta}\right)^2 + \left(\frac{\partial \hat{g}(\eta; q)}{\partial \eta}\right)^2 + 2\hat{f}(\eta; q)\frac{\partial^2 \hat{f}(\eta; q)}{\partial \eta^2}, \\
N_2 &= \frac{\partial^3 \hat{g}(\eta; q)}{\partial \eta^2} - 2\hat{g}(\eta; q)\frac{\partial \hat{f}(\eta; q)}{\partial \eta} + 2\hat{f}(\eta; q)\frac{\partial \hat{g}(\eta; q)}{\partial \eta}, \\
N_3 &= \frac{\partial^3 \hat{k}(\eta; q)}{\partial \eta^2} - \hat{k}(\eta; q)\frac{\partial \hat{f}(\eta; q)}{\partial \eta} + \hat{s}(\eta; q)\hat{g}(\eta; q) + 2\hat{f}(\eta; q)\frac{\partial \hat{k}(\eta; q)}{\partial \eta} + 1, \\
N_4 &= \frac{\partial^3 \hat{s}(\eta; q)}{\partial \eta^2} - \hat{k}(\eta; q)\hat{g}(\eta; q) - \hat{s}(\eta; q)\frac{\partial \hat{f}(\eta; q)}{\partial \eta} + 2\hat{f}(\eta; q)\frac{\partial \hat{s}(\eta; q)}{\partial \eta}, \\
N_5 &= \frac{\partial^3 \hat{\theta}(\eta; q)}{\partial \eta^2} + 2\Pr \hat{f}(\eta; q)\frac{\partial \hat{\theta}(\eta; q)}{\partial \eta}.
\end{align*}
\] (26-30)

Clearly, when \(q = 0\) the zero-order deformation Eqs. (20) - (24) give rise to;
\[
\begin{align*}
\hat{f}(\eta; 0) &= f_0(\eta), \quad \hat{g}(\eta; 0) = g_0(\eta), \quad \hat{k}(\eta; 0) = k_0(\eta), \quad \hat{s}(\eta; 0) = s_0(\eta), \quad \hat{\theta}(\eta; 0) = \theta_0(\eta).
\end{align*}
\] (31)

When \(q = 1\), they become;
\[
\begin{align*}
\hat{f}(\eta; 1) &= f(\eta), \quad \hat{g}(\eta; 1) = g(\eta), \quad \hat{k}(\eta; 1) = k(\eta), \quad \hat{s}(\eta; 1) = s(\eta), \quad \hat{\theta}(\eta; 1) = \theta(\eta).
\end{align*}
\] (32)

Expanding \(\hat{f}(\eta), \hat{g}(\eta), \hat{k}(\eta), \hat{s}(\eta)\) and \(\hat{\theta}(\eta)\) in a MacLaurin series with respect to the embedding parameter \(q\), we obtain;
\[
\begin{align*}
\hat{f}(\eta; q) &= f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta)q^m, \quad \hat{g}(\eta; q) = g_0(\eta) + \sum_{m=1}^{\infty} g_m(\eta)q^m, \\
\hat{k}(\eta; q) &= k_0(\eta) + \sum_{m=1}^{\infty} k_m(\eta)q^m, \\
\hat{s}(\eta; q) &= s_0(\eta) + \sum_{m=1}^{\infty} s_m(\eta)q^m, \quad \hat{\theta}(\eta; q) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta)q^m,
\end{align*}
\] (33)

where
Analytical Solution for Three-Dimensional Steady Flow
Hany N. HASSAN and Mohammad M. RASHIDI

http://wjst.wu.ac.th

\[f_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m f(\eta; q)}{\partial q^m} \right|_{q=0} \], \quad g_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m g(\eta; q)}{\partial q^m} \right|_{q=0} \], \quad k_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m k(\eta; q)}{\partial q^m} \right|_{q=0}, \]

\[s_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m s(\eta; q)}{\partial q^m} \right|_{q=0}, \quad \theta_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m \theta(\eta; q)}{\partial q^m} \right|_{q=0}, \]

(34)

The convergence of the series (33) strongly depends upon the control parameters \(h_1 \), \(h_2 \) and \(h_3 \).

Assuming that \(h_1 \), \(h_2 \) and \(h_3 \) are selected such that the series (33) are convergent at \(q = 1 \) then due to Eqs. (31) and (32) we have;

\[f(\eta) = f_0(\eta) + \sum_{m=1}^{+\infty} f_m(\eta), \quad g(\eta) = g_0(\eta) + \sum_{m=1}^{+\infty} g_m(\eta), \quad k(\eta) = k_0(\eta) + \sum_{m=1}^{+\infty} k_m(\eta), \]

\[s(\eta) = s_0(\eta) + \sum_{m=1}^{+\infty} s_m(\eta), \quad \theta(\eta) = \theta_0(\eta) + \sum_{m=1}^{+\infty} \theta_m(\eta), \]

(35)

Differentiating the zero-order deformation Eqs. (20) - (24) \(m \) times with respect to \(q \), then setting \(q = 0 \) and finally dividing by \(m! \), we have the \(m \)-th order deformation equations;

\[L_1 \left[f_m - \chi_m f_{m-1} \right] = h_1 R_{1,m}, \quad L_2 \left[g_m - \chi_m g_{m-1} \right] = h_2 R_{2,m}, \quad L_3 \left[k_m - \chi_m k_{m-1} \right] = h_3 R_{3,m}, \]

\[L_4 \left[s_m - \chi_m s_{m-1} \right] = h_4 R_{4,m}, \quad L_5 \left[\theta_m - \chi_m \theta_{m-1} \right] = h_5 R_{5,m}. \]

(36)

With the following boundary conditions;

\[f_m(0) = 0, \quad f'_m(0) = 0, \quad f''_m(0) = 0, \quad g_m(0) = 0, \quad g'_m(0) = 0, \quad k_m(0) = 0, \quad k'_m(0) = 0, \]

\[s_m(0) = 0, \quad s'_m(0) = 0, \quad \theta_m(0) = 0, \quad \theta'_m(0) = 0, \]

(37)

where

\[R_{1,m} = \frac{1}{(m-1)!} \left. \frac{\partial^{m-1} N_1}{\partial q^{m-1}} \right|_{q=0} = \frac{\partial^3 f_{m-1}}{\partial \eta^3} + \sum_{i=0}^{m-1} \left(\frac{\partial f_{m-1}}{\partial \eta} \frac{\partial f_{m-1-i}}{\partial \eta} + g_i g_{m-1-i} + 2f_i \frac{\partial^2 f_{m-1-i}}{\partial \eta^2} \right), \]

(38)

\[R_{2,m} = \frac{1}{(m-1)!} \left. \frac{\partial^{m-1} N_2}{\partial q^{m-1}} \right|_{q=0} = \frac{\partial^2 g_{m-1}}{\partial \eta^2} + \sum_{i=0}^{m-1} \left(2g_i \frac{\partial f_{m-1-i}}{\partial \eta} + 2f_i \frac{\partial g_{m-1-i}}{\partial \eta} \right), \]

(39)

\[R_{3,m} = \frac{1}{(m-1)!} \left. \frac{\partial^{m-1} N_3}{\partial q^{m-1}} \right|_{q=0} = \frac{\partial^2 k_{m-1}}{\partial \eta^2} + \sum_{i=0}^{m-1} \left(-k_i \frac{\partial f_{m-1-i}}{\partial \eta} + s_i g_{m-1-i} + 2f_i \frac{\partial k_{m-1-i}}{\partial \eta} \right) + (1 - \chi_m), \]

(40)

\[R_{4,m} = \frac{1}{(m-1)!} \left. \frac{\partial^{m-1} N_4}{\partial q^{m-1}} \right|_{q=0} = \frac{\partial^2 s_{m-1}}{\partial \eta^2} + \sum_{i=0}^{m-1} \left(-k_i g_{m-1-i} - s_i \frac{\partial f_{m-1-i}}{\partial \eta} + 2f_i \frac{\partial s_{m-1-i}}{\partial \eta} \right), \]

(41)

484
Walailak J Sci & Tech 2013; 10(5)
\[R_{s,m} = \frac{1}{(m-1)!} \frac{\partial^{m-1} N_s}{\partial q^{m-1}} \bigg|_{q=0} = \frac{\partial^2 \theta_{m-1}}{\partial \eta^2} + \text{Pr} \sum_{i=0}^{m-1} \left(2f_i \frac{\partial \theta_{m-1-i}}{\partial \eta} \right), \]

and

\[X_m = \begin{cases} 0, & m \leq 1, \\ 1, & m > 1. \end{cases} \]

Then the solutions for Eq. (36) can be expressed by;

\[f_m(\eta) = X_m f_{m-1} + h_1 L_1^{-1} \left[R_{1,m} \right] + c_1 + c_2 \eta + c_3 \eta^2, \]

\[g_m(\eta) = X_m g_{m-1} + h_1 L_2^{-1} \left[R_{2,m} \right] + c_4 + c_5 \eta, \]

\[k_m(\eta) = X_m k_{m-1} + h_2 L_3^{-1} \left[R_{3,m} \right] + c_6 + c_7 \eta, \]

\[s_m(\eta) = X_m s_{m-1} + h_2 L_4^{-1} \left[R_{4,m} \right] + c_8 + c_9 \eta, \]

\[\theta_m(\eta) = X_m \theta_{m-1} + h_3 L_5^{-1} \left[R_{5,m} \right] + c_{10} + c_{11} \eta, \]

where \(c_i, i = 1, 2, \ldots, 11 \) are constants to be determined by the boundary conditions (37), \(L_1^{-1}, L_2^{-1}, \]

\(L_3^{-1}, L_4^{-1} \) and \(L_5^{-1} \) denote the inverse linear operators of \(L_1, L_2, L_3, L_4 \) and \(L_5 \) respectively. For example, we can obtain the following results for solving the first order deformation equation;

\[f_1(\eta) = \frac{h_1}{360} \left(-105 \eta^3 + \eta^7 + 315 \eta^5 \delta - 7 \eta^6 \delta + 84 \eta^2 \delta^3 \right), \]

\[g_1(\eta) = \frac{h_1}{6} \left(\eta^4 - 4 \eta^3 \delta + 8 \eta \delta^3 \right), \]

\[k_1(\eta) = \frac{h_2}{360} \left(-15 \eta^4 + 2 \eta^6 + 60 \eta^3 \delta - 12 \eta^5 \delta - 120 \eta \delta^3 + 48 \eta \delta^5 \right), \]

\[s_1(\eta) = \frac{h_2}{360} \left(-180 \eta^5 + 15 \eta^7 + 2 \eta^6 + 360 \eta \delta - 60 \eta^3 \delta - 12 \eta^5 \delta + 120 \eta \delta^3 + 48 \eta \delta^5 \right), \]

\[\theta_1(\eta) = \frac{\text{Pr} h_3}{30} \left(-\eta^5 + 5 \eta^4 \delta - 4 \eta \delta^4 \right), \]

\[f_m(\eta), g_m(\eta), k_m(\eta), s_m(\eta) \text{ and } \theta_m(\eta) \text{ for } m = 2, 3, \ldots, \text{ can be calculated similarly with} \]

\[\text{the aid of mathematical software such as Mathematica or Maple. At the } M \text{-th order approximation, we have} \]

\[\text{the analytic solution of (9) - (14), namely;} \]

\[f(\eta) \approx \sum_{m=0}^{M} f_m(\eta), \quad g(\eta) \approx \sum_{m=0}^{M} g_n(\eta), \quad k(\eta) \approx \sum_{m=0}^{M} k_m(\eta), \]

\[s(\eta) \approx \sum_{m=0}^{M} s_m(\eta), \quad \theta(\eta) \approx \sum_{m=0}^{M} \theta_m(\eta), \]

\[\text{(54)} \]
Convergence of the HAM solutions

The series solutions of the functions $f_m(\eta)$, $g_m(\eta)$, $k_m(\eta)$, $s_m(\eta)$ and $\theta_m(\eta)$ are given in Eq. (35). The convergence of these series and rate of the approximation for the HAM strongly depend upon the values of the convergence control parameters, h_1, h_2 and h_3. In the usual HAM [28], there is only one unknown convergence-control parameter, h. In order to obtain the admissible value of h for the present problem, $h_1 = h_2 = h_3 = h$ is assumed and the h-curves are plotted for 10th-order approximations. One can determine the possible valid region of h as shown in Figures 2 - 6, but unfortunately it cannot tell us which value of h gives the fastest convergent series. However, in the expression of the obtained solution, there are 3 unknown convergence control parameters, h_1, h_2 and h_3, which not only can make sure the convergence of the solutions, but also can give the fastest convergent series by using the possible optimal values of convergence-control parameters determined by minimizing the averaged residual error [29];

$$E_{j,M} = \frac{1}{K} \sum_{i=1}^{K} \left[N_j \left(\sum_{i=1}^{M} f(i\Delta \eta), \sum_{i=1}^{M} g(i\Delta \eta), \sum_{i=1}^{M} k(i\Delta \eta), \sum_{i=1}^{M} s(i\Delta \eta), \sum_{i=1}^{M} \theta(i\Delta \eta) \right) \right]^2, \quad j = 1, 2, 3. \quad (55)$$

Corresponding to the nonlinear algebraic equations;

$$\frac{\partial E_{j,M}}{\partial h_1} = 0, \quad \frac{\partial E_{j,M}}{\partial h_2} = 0, \quad \frac{\partial E_{j,M}}{\partial h_3} = 0. \quad (56)$$

Using the symbolic computation software Mathematica, by minimizing the averaged residual error Eq. (55), the optimal convergence-control parameters can be obtained directly at 10th-order approximation, where $\Delta \eta = \delta / K$ and $K = 20$ in this problem. The optimal values of h_1 and h_2 for different values of δ at 10th-order approximation are presented Table 1, and the optimal value of h_3 for different values of δ and Pr at 10th-order approximation are shown in Table 2. To see the accuracy of the solutions, substituting the approximate solution of $f(\eta)$, $g(\eta)$, $k(\eta)$, $s(\eta)$ and $\theta(\eta)$ obtained by the 10th-order approximation yields the residual error as follows;

$$\text{Res } f = f'' - \left(f' \right)^2 + g^2 + 2f f'', \quad (57)$$
$$\text{Res } g = g'' - 2f f' + 2g g', \quad (58)$$
$$\text{Res } k = k'' - k f' + s g + 2 f k' + 1, \quad (59)$$
$$\text{Res } s = s - g k - s f' + 2 f s', \quad (60)$$
$$\text{Res } \theta = \theta'' + 2 \text{Pr } \theta'. \quad (61)$$

If $\text{Res} = 0$ then the approximate solution obtained by the HAM happens to be the exact solution. Generally, such a situation does not arise for nonlinear problems. Residual errors of $f(\eta)$, $g(\eta)$, $k(\eta)$, $s(\eta)$ and $\theta(\eta)$ obtained by the 10th-order approximation for $\delta = 0.5$ and $\delta = 1$ at Pr = 20 are presented in Figures 7 - 16.
Results and discussion

In order to verify the accuracy of the used method, the HAM results of $f(\eta)$, $g(\eta)$, $k(\eta)$ and $s(\eta)$ compared with the numerical solutions obtained by the fifth-order Runge-Kutta method in Table 3. One can see a good agreement between the analytical results of the HAM and numerical results as shown in Tables 3 and 4 and shown in Figures 17 and 18. The normalized temperature profiles for different values of the Prandtl number are represented in Figures 19 and 20 at $\delta = 0.5$ and $\delta = 1$, respectively. The Prandtl number ranges from 0.1 for liquid metals, to 7 for water and to more than 100 for some oils. In Figures 19 and 20 and Table 2, it can be seen that the HAM solution contains all groups.

![Figure 2](image2.png)

Figure 2 The h-curves of $f''(0)$ and $g'(0)$ obtained by the 10th order approximation of HAM, when $\delta = 0.5$.

![Figure 3](image3.png)

Figure 3 The h-curves of $k'(0)$ and $s'(0)$ obtained by the 10th order approximation of HAM, when $\delta = 0.5$.
Figure 4 The \(h \)-curves of \(f''(0) \) and \(g'(0) \) obtained by the 10th order approximation of HAM, when \(\delta = 1 \).

Figure 5 The \(h \)-curves of \(k'(0) \) and \(s'(0) \) obtained by the 10th order approximation of HAM, when \(\delta = 1 \).
Figure 6 The h-curves of $\theta'(0)$ obtained by the 10th order approximation of HAM at different values of Pr, when $\delta = 0.5$.

Figure 7 The absolute residual f for $\delta = 0.5$ for different orders of approximation of HAM at optimal values of δ_1, δ_2 and δ_3.
Figure 8 The absolute residual g for $\delta = 0.5$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.

Figure 9 The absolute residual k for $\delta = 0.5$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.
Figure 10 The absolute residual s for $\delta = 0.5$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.

Figure 11 The absolute residual θ for $\delta = 0.5$ and $Pr = 20$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.
Figure 12 The absolute residual f for $\delta = 1$ and for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.

Figure 13 The absolute residual g for $\delta = 1$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.
Figure 14 The absolute residual k for $\delta = 1$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.

Figure 15 The absolute residual s for $\delta = 1$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.
Figure 16 The absolute residual θ for $\delta = 1$ and $Pr = 20$ for different orders of approximation of HAM at optimal values of h_1, h_2 and h_3.

Figure 17 The normalized radial velocity profiles for the rotating flow obtained by the 10th-order approximation of the HAM for $\delta = 1$ in comparison with the numerical solution, at optimal values of h_1, h_2 and h_3.
Figure 18 The normalized velocity profiles for the draining flow $k(\eta)$ and lateral flow $s(\eta)$ obtained by the 10th-order approximation of the HAM for $\delta = 1$ in comparison with the numerical solution, at optimal values of h_1, h_2 and h_3.

Figure 19 The normalized temperature profiles $\theta(\eta)$ obtained by the 10th-order approximation of the HAM for different values of the Prandtl number, when $\delta = 0.5$.
Analytical Solution for Three-Dimensional Steady Flow

Hany N. HASSAN and Mohammad M. RASHIDI

Figure 20 The normalized temperature profiles $\theta(\eta)$ obtained by the 10th-order approximation of the HAM for different values of the Prandtl number, when $\delta = 1$.

Table 1 Optimal values of h_1 and h_2 for different values of δ at 10th-order approximation.

<table>
<thead>
<tr>
<th>δ</th>
<th>h_1</th>
<th>h_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>-0.90376</td>
<td>-1.00479</td>
</tr>
<tr>
<td>1</td>
<td>-0.53355</td>
<td>-0.66794</td>
</tr>
</tbody>
</table>

Table 2 Optimal values of h_3 for different values of Pr at 10th-order approximation.

<table>
<thead>
<tr>
<th>Pr</th>
<th>0.1</th>
<th>7</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_3 at $\delta = 0.5$</td>
<td>-1.19438</td>
<td>-0.97365</td>
<td>-0.93125</td>
<td>-0.73685</td>
<td>-0.45190</td>
<td>-0.45175</td>
<td>-0.45039</td>
<td>-0.44353</td>
</tr>
<tr>
<td>h_3 at $\delta = 1$</td>
<td>-0.40432</td>
<td>-0.24331</td>
<td>-0.23035</td>
<td>-0.15443</td>
<td>-0.11201</td>
<td>-0.08787</td>
<td>-0.07224</td>
<td>-0.06129</td>
</tr>
</tbody>
</table>

Table 3 The analytic results of $f(\eta)$ and $g(\eta)$ at different values of η compared with the numerical results, when $\delta = 1$ at optimal values of h_1 and h_2.

<table>
<thead>
<tr>
<th>η</th>
<th>$f(\eta)$</th>
<th>$g(\eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HAM</td>
<td>Num</td>
</tr>
<tr>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.003347</td>
<td>0.003364</td>
</tr>
<tr>
<td>0.2</td>
<td>0.012800</td>
<td>0.012825</td>
</tr>
<tr>
<td>0.3</td>
<td>0.027345</td>
<td>0.027490</td>
</tr>
<tr>
<td>0.4</td>
<td>0.046281</td>
<td>0.046535</td>
</tr>
<tr>
<td>0.5</td>
<td>0.068807</td>
<td>0.069195</td>
</tr>
<tr>
<td>0.6</td>
<td>0.094217</td>
<td>0.094763</td>
</tr>
<tr>
<td>0.7</td>
<td>0.121859</td>
<td>0.122580</td>
</tr>
<tr>
<td>0.8</td>
<td>0.151124</td>
<td>0.150320</td>
</tr>
<tr>
<td>0.9</td>
<td>0.181442</td>
<td>0.182545</td>
</tr>
<tr>
<td>1</td>
<td>0.212274</td>
<td>0.213575</td>
</tr>
</tbody>
</table>
Table 4 The analytic results of $k(\eta)$ and $-s(\eta)$ at different values of η compared with the numerical results, when $\delta = 1$ at optimal values of h_1 and h_2.

<table>
<thead>
<tr>
<th>η</th>
<th>HAM $k(\eta)$</th>
<th>Num $k(\eta)$</th>
<th>HAM $-s(\eta)$</th>
<th>Num $-s(\eta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.084529</td>
<td>0.084113</td>
<td>0.022742</td>
<td>0.022565</td>
</tr>
<tr>
<td>0.2</td>
<td>0.159275</td>
<td>0.158444</td>
<td>0.044681</td>
<td>0.044332</td>
</tr>
<tr>
<td>0.3</td>
<td>0.224444</td>
<td>0.223201</td>
<td>0.065152</td>
<td>0.064642</td>
</tr>
<tr>
<td>0.4</td>
<td>0.280230</td>
<td>0.278584</td>
<td>0.083628</td>
<td>0.082971</td>
</tr>
<tr>
<td>0.5</td>
<td>0.326824</td>
<td>0.324796</td>
<td>0.099702</td>
<td>0.098919</td>
</tr>
<tr>
<td>0.6</td>
<td>0.364424</td>
<td>0.362047</td>
<td>0.113081</td>
<td>0.112194</td>
</tr>
<tr>
<td>0.7</td>
<td>0.393240</td>
<td>0.390561</td>
<td>0.123568</td>
<td>0.122603</td>
</tr>
<tr>
<td>0.8</td>
<td>0.413499</td>
<td>0.410583</td>
<td>0.131057</td>
<td>0.130038</td>
</tr>
<tr>
<td>0.9</td>
<td>0.425452</td>
<td>0.422380</td>
<td>0.135515</td>
<td>0.134467</td>
</tr>
<tr>
<td>1</td>
<td>0.429372</td>
<td>0.426243</td>
<td>0.136982</td>
<td>0.135925</td>
</tr>
</tbody>
</table>

Conclusions

In this work, the OHAM has been successfully implemented to develop analytical solutions of the system of nonlinear ordinary differential equations derived from similarity transformation of the steady three-dimensional problem of fluid deposition on an inclined rotating disk. The convergence analyses show that the optimal homotopy analysis method gives accurate results for a large thickness of the fluid film. For a fixed value of the film thickness, the OHAM is valid for large Prandtl numbers. The effects of thickness of the fluid film on the profiles of temperature, radial velocity for the rotating flow, velocity for the draining flow and lateral flow illustrated with graphs. The effect of Prandtl numbers on the temperature profile was illustrated with graphs. When compared with the numerical results, the present results are found to be highly accurate and consistent with the numerical results pertaining to the same problem. The use of the concept of averaged residual recently introduced by Liao [29] greatly improves the rate of the convergence of the analytical solution by allowing the determination of the optimal auxiliary parameter. Consequently, the present method of the OHAM is successful for the nonlinear problem of three-dimensional steady flow of condensation film on an inclined rotating disk and verifies that the present method is a useful tool for highly nonlinear problems in science and engineering.

References

Analytical Solution for Three-Dimensional Steady Flow Hany N. HASSAN and Mohammad M. RASHIDI

http://wjst.wu.ac.th

