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Abstract 

An analysis has been carried out to examine the two-dimensional and magnetohydrodynamic 
(MHD) flow of thixotropic fluid over a stretched surface. The thermal radiation effect in the heat transfer 
is considered when the thermal conductivity is not constant. Conservation of mass, momentum and 
energy leads to the governing partial differential equations of the present study. The resulting equations 
are solved for convergent series solutions. Numerical values of the skin-friction coefficient are presented 
and analyzed. 
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Introduction 

In recent times, the dynamics of non-
Newtonian fluids has become more and more 
important for industrial and engineering 
applications. The applications of non-Newtonian 
fluids are significant in micro/nano fluidic, 
biofluid and hematology, bacteriology, building 
and confectionery industries, chemical/petroleum 
engineering and mineral processing industries, 
bubble columns, polymer solution and food 
industries [1]. Due to diversity in behavior of the 
stress in the momentum equations, several models 
are suggested. The resulting equations for non-
Newtonian fluids are complex, higher order and 
more nonlinear than the well known Navier-Stokes 
equations for viscous fluids. Some salient features 
of these fluids like shear thinning/shear thickening 
and relaxation and retardation time effects have 
already been studied in recent works [2-9]. 

The boundary layer flow over a stretching 
sheet with heat transfer has importance in the 
polymer industry. In particular, non-Newtonian 
fluids are quite common in polymer sheet 
extrusion from dyes, optical fibers, manufacturing 
processes, drawing of plastic films and many other 

processes. In industrial processes involving such 
fluids, the quality of the final product is closely 
associated with the rate of cooling. The quality of 
such a sheet is affected by heat transfer between 
the sheet and the fluid [10-15]. 

Many materials in our daily life including 
drilling muds, cosmetic products, clay, suspension 
etc become less viscous with time. To explore the 
rheological properties of such types of materials, a 
thixotropic fluid model is more appropriate. A 
hysteresis influence is noticed when the shear rate 
of the thixotropic fluid is ramped up or down. 
Recently Sadeqi et al. [16] investigated the Blasius 
flow of thixotropic fluid. They analyzed the results 
numerically using the Newtonian-Kontorovitch 
method. The magnetohydrodynamic (MHD) flow 
with heat transfer are very important in 
magnetohydrodynamic power generators and 
accelerators, cooling of nuclear reactors, crystal 
growth etc. Several investigators analyzed the 
MHD flow under various conditions. Hayat et al. 
[17] reported the transient flow of viscoelastic 
fluid in the presence of a magnetic field. 
Magnetohydrodynamic flow of viscous fluid near 



MHD Flow of Thixotropic Fluid Tasawar HAYAT et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(1) 
 
30 

a stagnation point was addressed by Rashidi and 
Erfani [18]. They also considered the heat transfer 
phenomenon and analyzed the results analytically. 
Turkyilmazoglu [19] studied the time-dependent 
MHD flow of viscous fluid by taking variable 
viscosity. MHD transient flow of dusty fluid was 
investigated by Makinde and Chinyoka [20]. The 
Navier slip condition and variable physical 
properties are also discussed in this study. 
Abbasbandy and Hayat [21] reported the MHD 
Falkner-Skan flow of viscous fluids by adopting 
the homotopy analysis method. Very recently, 
Soret and Dufour the effects on MHD peristaltic 
flow of viscous fluid were examined by Hayat et 
al. [22]. They obtained the results by a 
perturbation technique. 

All the above investigations have been 
carried out by considering constant thermal 
conductivity. But it has now been proved that the 
thermal conductivity varies linearly with 
temperature from 0 to 400 °F [23]. Having such in 
mind, Vyas and Rai [24] investigated the boundary 
layer flow of viscous fluid with variable thermal 
conductivity. Furthermore, the thermal radiation 
effects are important in many industrial processes 
which involve heat transfer from nuclear fuel 
debris, underground disposal of radioactive waste 
material, storage of food stuffs and many others. 
Motivated by such facts, the present work is 
proposed to analyze the thermal radiation effects 

on MHD flow of thixotropic fluid with variable 
thermal conductivity. The structure of this paper is 
as follows. In section 2, the mathematical model is 
formulated. Section 3 addresses the series 
solutions by adopting the homotopy analysis 
method (HAM) [25-30]. Convergence analysis and 
discussion of the results are presented in section 4. 
Section 5 has the final remarks. 
 
Basic equations 

Consider a Cartesian coordinate system such 
that x-axis is along the stretched surface and y-axis 
is perpendicular to it. We consider the 
magnetohydrodynamic boundary layer flow of 
thixotropic fluid. A constant magnetic field of 
strength B0 is exerted in the y-direction. The flow 
is steady and the magnetic Reynolds number is 
taken to be small so that an induced magnetic field 
is negligible in comparison to the applied magnetic 
field. The temperature of the surface (Tw) is greater 
than the temperature of ambient fluid (T∞). Heat 
transfer analysis is set up in the presence of 
thermal radiation and with variable thermal 
conductivity. Taking into account the Rosseland’s 
approximation for radiative heat flux [24] mass, 
momentum and energy conservations are 
simplified as follows: 
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where (u,v) are the velocity components parallel to the x- and y-axes. R1 and R2 are the constants, v the 
dynamic viscosity of the fluid, ρ the density of fluid, σ* the electrical conductivity, T the temperature, k 
the variable thermal conductivity, Cp the specific heat, σ the Stefan-Boltzmann constant and k* the mean 
absorption coefficient. 
 
Eqs. (1) - (3) have to be solved subject to the boundary conditions 
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in which c is the stretching rate. We introduce the following change of variables 
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where prime denotes the differentiation with respect to η and we consider Tw(x) = T∞ + Dxαθ (η) at η = 0 
and variable thermal conductivity k = k∞[1 + εθ], k∞ is the fluid free stream conductivity and ε is given by 
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The incompressibility condition is automatically satisfied by Eq. (5) and Eqs. (2)-(4) become 
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the radiation parameter. 
 
The dimensionless form of the skin friction coefficient is 
 

.)]0([6/)0(Re 3
1

2/1 fKfC fx ′′−′′=             (10) 

  



MHD Flow of Thixotropic Fluid Tasawar HAYAT et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(1) 
 
32 

Series solutions 

The homotopic solutions for f  and θ  in a set of base functions 
 

}0,0 ),exp({ ≥≥− nknk ηη              (11) 
 
can be expressed as 
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where k

nma ,  and k
nmb ,  are the coefficients. The appropriate initial approximations and auxiliary linear 

operators for the considered problems are 
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subject to the following properties 
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In which iC )51( −=i  denote the arbitrary constants and the zeroth order deformation problems are 
expressible in the form 
 

( ) ( ) ( ),);(ˆ)();(ˆ1 0 qfqfqfLq fff ηηη N=−−            (17) 
 

( ) ( ) ( ),);(ˆ),;(ˆ)();(ˆ1 0 qfqqqLq ηηθηθηθ θθθ N=−−           (18) 

.0);(ˆ and 1);0(ˆ ,0);(ˆ ,1);0(ˆ ,);0(ˆ =∞==∞== ′′ qqqfqfSqf θθ         (19) 
 
Here q shows embedding parameter, f and θ  the non-zero auxiliary parameters and the nonlinear 

operators fN and θN  are given by 
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Clearly the convergence of series Eq. (17) and Eq. (18) is closely associated with fh  and .θh  The values 

of fh  and θh  are chosen such that the series Eq. (17) and Eq. (18) converge at q = 1. Hence 
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Convergence analysis and discussion 

We recall that the auxiliary parameters f

and θ are useful in controlling and adjusting the 

convergence of series solutions. We draw the −  
curves at 19th order of approximation for the 
meaningful values of f  and θ . It is noticed 
through Figures 1 and 2 that the admissible values 
of f  and θ are 25.07.0 −≤≤− f  and 

.5.095.0 −≤≤− θ  Thus our series solutions 

converge in the whole region of η for 5.0−=f

and 7.0−=θ . 
To see the behaviors of different emerging 

parameters, we have plotted Figures 3-14 for the 
velocity field )(ηf ′  and temperature profile 

).(ηθ  Variations of K1, K2, M and S on the 
velocity field are depicted in the Figures 3-6. Both 
the non-Newtonian parameters K1 and K2 have 
similar effects on the velocity field in a qualitative 
sense. By increasing K1 and K2 both the velocity 
and boundary layer thickness increase. It is noticed 
here that K1 is negative and K2 is positive. That is 
why both parameters have same behaviors. If we 
take the value of K1 to be negative then it has 
opposite behavior as compared to K2. Effects of 
the Hartman number can be seen in Figure 5. The 
Hartman number opposes the flow because the 
applied magnetic field normal to the flow direction 
induces the drag in terms of Lorentz force due to 
which the fluid velocity and boundary layer 
thickness decreases. Figure 6 demonstrates the 
variation of S on the velocity. Suction is an agent 
that leads to a decrease in fluid flow due to which 
the fluid velocity )(ηf ′  decreases by increasing 
S. Figures 7-14 represent the effects of different 

parameters on the temperature profile )(ηθ . 
Figures 7 and 8 illustrate that temperature and 
thermal boundary layer thickness are decreasing 
functions of K1 and K2. Through comparative study 
of Figures 3, 4, 7 and 8 we found that the variation 
in velocity is more significant than the variation in 
temperature. Hartman number increases the 
temperature and thermal boundary layer thickness 
(Figure 9). The effects of the Hartman number on 
velocity and temperature are quite opposite. 
Figure 10 illustrates that suction decreases the 
temperature profile. From Figures 6 and 10, we 
observed that the velocity profile disappears 
quickly when compared with the temperature. In 
Figure 11 we observed that the Prandtl number 
decreases the thermal boundary layer thickness. In 
fact an increase in the Prandtl number increases the 
thermal diffusitivity and thus there is a decrease in 
the temperature profile. By increasing α, the 
temperature profile decreases but by increasing ε 
both the temperature and thermal boundary layer 
thickness increase (Figure 12). In addition, an 
increase in thermal radiation parameter increases 
the temperature profile and thermal boundary layer 
thickness. So temperature and thermal boundary 
layer thickness are decreasing functions of N 
(Figure 13). 

Table 1 is provided to see how much 
approximations are required to find a convergent 
series solution. From this table we see that 15th 
order computations are enough for velocity and 
20th order computations are sufficient for 
temperature. It is observed that less computations 
are required for velocity when compared to 
temperature. Table 2 shows the numerical values 
of skin-friction coefficient for different values of 
K1, K2, M and S. The values of skin-friction 
coefficient increase by increasing S and M and 
decrease by increasing K1 and K2. 
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Figure 1 − curve for the function f . 
 

 
Figure 2 − curve for the function θ. 
 

 
Figure 3 Influence of 1K on )(ηf ′ . 
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Figure 4 Influence of 2K on )(ηf ′ . 
 

 
Figure 5 Influence of M on )(ηf ′ . 
 
 

 
Figure 6 Influence of S on )(ηf ′ . 
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Figure 7 Influence of 1K on )(ηθ . 
 

 
Figure 8 Influence of 2K on )(ηθ . 
 

 
Figure 9 Influence of M on )(ηθ . 



MHD Flow of Thixotropic Fluid Tasawar HAYAT et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2013; 10(1) 
 
38 

 
Figure 10 Influence of S on )(ηθ . 
 

 
Figure 11 Influence of Pr on )(ηθ . 
 

 
Figure 12 Influence of α on )(ηθ . 
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Figure 13 Influence of ε on )(ηθ . 
 
 

 
Figure 14 Influence of N on )(ηθ . 
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Table 1 Convergence of series solutions for different order of approximations when K₁ = 0.1, K₂ = 0.2, S 
= 0.5, M = 0.6, ε = 0.2, α = 0.8, Pr = 1.0, N = 0.3, ℏf = −0.5 and ℏθ = −0.8. 
 

Order of approximations -f′′(0) -θ′(0) 
1 1.12750 0.88000 
5 1.18045 0.84353 
10 1.18134 0.83659 
15 1.18133 0.83583 
25 1.18133 0.83572 
30 1.18133 0.83572 
35 1.18133 0.83572 

 
 
Table 2 Numerical values of skin-friction coefficient for different values of K₁, K₂, M and S. 
 

S M K₁ K₂ -Rex
1/2Cf 

0.0 0.6 0.1 0.2 1.01988 
0.7    1.20293 
1.0    1.27055 
 0.0   1.05956 
 0.4   1.10400 
 1.0   1.28407 
  0.0  1.20338 
  0.5  0.99602 
  0.8  0.90599 
   0.0 1.33203 
   0.4 1.10701 
   0.7 1.04074 

 
 
Closing remarks 

MHD flow of thixotropic fluid over a 
stretched surface with thermal radiation is studied. 
Further heat transfer is considered in the presence 
of variable thermal conductivity. The main results 
of the conducted study are: 

1. The non-Newtonian parameters K1 and K2 
have quite opposite effects on the velocity and 
temperature profiles. 

2. The effects of M and S on the velocity 
field are similar in a qualitative sense. 

3. An increase in S decreases the temperature 
and thermal boundary layer thickness. 

4. Variations in α and ε on the temperature 
are quite opposite. 

5. The behaviors of S and M on the skin 
friction coefficient are quite opposite to that of K1 
and K2. 
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