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Abstract 

Crop quality depends dominantly on the nutrients present in its growth media. For precision 
farming, fertigation is a challenge, especially when dealing with economical and efficiency factors. In this 
study, the aquaponic pond water macronutrient prediction model (wNPK) was developed based on leaf 
photosynthetic signature predictors. Aquaphotomics was preliminarily used for correlating physical 
limnological properties with nitrate, phosphate, potassium concentrations, and the leaf signatures. Using a 
digital camera, 18 spectro-textural-morphological features were extracted. Neighborhood component 
analysis (NCA) and ReliefF algorithms selected the spectral components blue, a*, and red minus luma as 
the most significant as supported by principal component analysis, resulting in low computational cost. A 
Gravitational Search Algorithm (GSA) was employed to optimize the recurrent neural network (RNN) 
architecture resulting in higher sensitivity. The hybrid NCA-ReliefF-GSA-RNN (wNPK) predicted NPK 
with 93.61, 84.03, and 91.39 % accuracy, respectively, besting out other configured feature-based 
machine learning models. Using wNPK, it was confirmed that potassium helped in accelerating seed 
germination and nitrogen in promoting chlorophyll intensification, especially on the 6th week after 
sowing. Phosphate and potassium were the energy and health elements that were consumed in a larger 
amount at the end of the head development stage. wNPK rules out that macronutrient concentration have 
a direct resemblance to crop leaf signatures; thus, a leaf is a good indicator of the water quality. The 
results pointed out that the use of a single camera to measure both water macronutrient concentrations and 
crop signature at the same time is an innovative, efficient, and economical approach for precision 
farming. 
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Introduction 

In agriculture, water is the source of fundamental nutrients essential for plant growth. It is an 
inorganic and almost colorless compound in its purest form at room temperature that contains a 
substantial amount of macronutrients and micronutrients. For plant nutrient nutrition, macronutrient is 
defined as the collection of elements that are required in a large amount to induce plant growth. It consists 
of nitrogen (N), phosphorus (P), potassium (K), hydrogen (H), oxygen (O), carbon (C), sulfur (S), 
calcium (Ca), and magnesium (Mg). Micronutrients, on the other hand, are an indispensable cluster of 
nutrients that are acquired in a lesser amount than the macronutrients. It mainly consists of iron (Fe), 
copper (Cu), zinc (Zn), manganese (Mn), molybdenum (Mo), chlorine (Cl), nickel (Ni), and boron (B). 
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These nutrients are naturally fostered by soil fertility where the water system is exposed. Soil nutrients 
have been quantified using the standard approach of near-infrared laser absorption [1]. Both macro-and 
micronutrients are obtained by aquatic plants in the form of ions. For any cases that there is soil nutrient 
infertility, the possibility of water nutrient concentration is expected to be low especially when there are 
no aquatic animals present in the system that could provide additional nutrients. In the case of 
aquaponics, a revolutionary scheme of soilless agriculture that cultivates and produces fish and crops 
using water as a key growth medium, water is the primary promoter of plant growth. Thus, plant leaf 
properties have a direct resemblance to the existing water nutrient concentration [2]. 

Carbon, hydrogen, and oxygen are abundant in open space and can be easily derived from water and 
air. However, nitrogen, phosphorus, and potassium (NPK), as the primary macronutrients, are vulnerable 
to imbalance and shortage depending on abiotic factors including temperature and biotic factors such as 
microorganisms and animals. The nitrogen cycle is exhibited in this cultivation setup as fish effluents are 
mixed onto the water system where Nitrosomonas decomposes it into nitrites (NO2

-) and Nitrobacter 
decomposes nitrites into nitrates (NO3

-) which is considered as vital plant food. Hence, nitrogen 
constitutes half of the dry matter of photosystems and protoplasm of plants. Phosphorus is essential for 
the primary and secondary growth of roots, and potassium is responsible for water movement and 
flowering. Increasing amounts of nitrate, phosphate, and potassium are lethal to fish and plants in an 
aquaponic environment due to the existence of eutrophication [3]. Deprivation of each of these primary 
macronutrients is reflective to plant architecture. The lake hydrochemical data, namely, phosphate and 
nitrate concentrations were quantified using the Winkler method and spectrophotometry [4]. The total 
phosphorus dissolved in lake water was determined using the molybdenum blue colorimetric method [5]. 

A pond is a shallow and isolated water ecosystem that is topographically smaller than a lake. Pond 
biodiversity varies depending on the living organisms existing in it. Most frequently, artificial ponds are 
expected to be used in controlled environment agriculture (CEA) [6]. Its floor and walls can be 
constructed using plastic tarpaulins or cement. However, in this setup, the interaction of soil 
microorganisms to water nutrient enhancement is limited. In the Philippines, artificial ponds are still 
observed to have a certain mixture of soil components [7]. By default, artificial pond water cannot 
provide sufficient nutrients for plant intake without fish effluents or other suppliers of nutrients. Even the 
feed composition for fishes impacts the nutrient concentration of water [8]. Hence, proper nutrient and 
irrigation systems must be incorporated in any type of cultivation system to have higher yields. Nutrient 
management systems must be based on the nutrient requirement of crops to ensure on-time production 
[9]. 

The automated irrigation and fertigation system employs the concept of precision agriculture that 
controls the manages the amount of nutrient-rich water to flow through crop grow beds [10]. NPK 
concentrations were determined using sensors that are connected to a microcontroller and relay control 
circuit [11]. These sensors can even reach a 60 s response time [12]. It is usually done using weather and 
limnological sensors. In light of the efficient and optimal application of fertilizer, nitrogen, and 
phosphorus concentrations for tobacco farming were quantified using flame spectrophotometry [13]. 
Weather-based determination of water nutrients is characterized by the amount of precipitation, 
environment humidity and temperature, wind speed, and solar irradiation [14]. The soil and water 
assessment tool (SWAT) was developed based on generalized likelihood uncertainty estimation (GLUE) 
and implemented in 3 open-field water reservoirs [14]. An aquaponic setup of pakchoi (Brassica rapa L.) 
and tilapia (Oreochromis niloticus) was constructed, and the ammonia, nitrate and nitrite concentrations 
were measured using water sampling and processed using ultraviolet-visible (UV-Vis) spectrophotometer 
in the 190 to 1100 nm spectrum [15]. In a recirculating aquaculture system (RAS), sulfate strengthens the 
hydrogen sulfide (H2S) concentration in water that is dangerous to all microorganisms and fishes living in 
it. Hence, a method of determining sulfide concentration was developed using methylene blue [16,17]. 
The carbon and hydrogen concentrations on an artificial aquaponic pond were measured using UV-Vis 
spectrophotometry in the range of 100 to 1000 nm and multigene symbolic regression genetic 
programming (MSRGP) [18] and phosphate concentration are predicted using an adaptive neuro-fuzzy 
inference system (ANFIS) [19]. The nitrate concentration in a water reservoir was monitored using the 
cadmium-reduction method through the cadmium column system [20]. Moreover, an automated 
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integrated syringe-pump-based environmental-water analyzer has been proven successful in analyzing 
nitrate and nitrite concentrations in an estuarine system [21]. Dissolved carbon dioxide (CO2) 
concentration in a lake was measured using satellite estimation [22]. NPK concentration has been 
measured using color sensor TCS3200 [23]. 

Despite the abovementioned advances in nutrient detection and monitoring in agriculture, leaf-based 
detection of water nutrients is not yet done. The techniques currently used worldwide are more on 
spectrophotometry and aquatic chemical sensors which are expensive. The prior technique cannot be 
employed in real-time monitoring of water nutrient concentrations which raises a problem in the very 
active water system in an aquaponic environment. As of this writing, no published studies have correlated 
crop leaf properties to water nutrient concentration in a soilless environment as a basis for an automated 
nutrient management system.  

In this study, a feature-based machine learning model with lettuce leaf canopy photosynthetic 
signatures as inputs was developed to predict the nutrient concentration present on the aquaponic pond 
water where plant roots are biologically connected. The developed model is named wNPK which stands 
for water nitrate, phosphate, and potassium concentrations that is technically the output of this AI model. 
A digital RGB camera is used to capture leaf canopy images. Electronic temperature, pH, and electrical 
conductivity sensors were used to acquire limnological data for aquaphotomic analysis in correlating it 
with ultraviolet-visible light (UV-Vis) spectrophotometrically generated nitrate, phosphate, and potassium 
concentrations. A Gravitational Search Algorithm was used to optimizing the selected feature-based 
machine learning model to yield acceptable prediction accuracy and sensitivity. Spectro-textural-
morphological leaf signatures were considered because they can be extracted using non-destructive 
imaging which is ideal when cultivating a limited population of crops. It is also better than measuring 
manually the fresh weights of crops as not to disturb their natural growth condition. This developed low-
cost approach in detecting water nutrient concentration employing a consumer-grade camera is an 
essential innovation in precision farming. It is part of the vision-based lettuce phenotype (VIPHLET) 
model that is implemented in a lettuce smart farm. 
 
Materials and methods 

The model for predicting aquaponic water macronutrient concentrations requires both water and 
lettuce leaf samples as inputs during training (Figure 1). The process involves physical limnological 
properties acquisition through electronic sensors, aquaphotomics modeling, leaf canopy feature 
extraction, and machine learning modeling (Figure 1). However, the final model outputs nitrate, 
phosphate, and potassium concentrations by just setting the captured lettuce phenotypic image as input.   
 
 

 
 
Figure 1 General architecture of the development of aquaponic water macronutrient concentrations 
prediction model based on lettuce leaf signatures. 
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Plant material and controlled environment cultivation 
Loose-leaf green lettuce, or Lactuca sativa Altima (Ramgo International Corporation, Philippines), 

is the chosen cultivar to be grown inside a controlled aquaponic chamber for a 42-day complete plant life 
cycle from August to September 2020 (14.5181° N, 121.2390° E). To provide sufficient nutrients on the 
water for plant intake, an aquaculture tilapia and carps (Bureau of Fisheries and Aquatic Resources, 
Philippines) was placed on an artificial freshwater pond that is connected to the 2-layer nutrient film 
technique (NFT) plant growth chamber through a water pump. NFT vessel is made up of 3-inch food-
grade polyvinyl chloride (PVC) pipes configured in serpentine vertical farming configuration (Figure 2). 
Green rockwool set at the bottom of a 2-inch plastic cup is the employed growth media for the crop. The 
top layer of the growth rack houses the red and blue photosynthetic light source using LED strips. The 
lower rack is equipped with a T8 LED full-spectrum light source. The photoperiod is set to 18 light h 
(6:00 a.m. to 10:00 p.m.) and 6 dark h (10:00 p.m. to 6:00 a.m.). It is automatically enabled by a lighting 
system developed using Arduino UNO and relay driver. For each layer, 20 lettuces were directly 
germinated on green rockwools with a planting distance of 6 inches on each side. Aside from weekly 
aquaculture tank water cleaning to mitigate over-nourishment and accumulation of undecomposed fish 
effluents, no pH buffering solution was added to it. There is no environmental temperature control letting 
the crops and aquaponic water be affected by varying ambient temperature.  

Plant phenotypic images were captured thrice a week (Monday, Wednesday, and Saturday) for 6 
weeks using IP Logitech camera 1080p. The generated image is configured to have 3000×3000 pixels 
(1:1 aspect ratio) spatial resolution. Red-colored textured clothe was used as the background (non-
vegetative) of the lettuce canopy (vegetative) to increase the contrast of color distinction. Overall, there is 
a total of 720 lettuce phenotypic images used in this study (Table 1). 

 
 

Table 1 Summary of lettuce image collection under red-blue and white light treatments with thrice a 
Week Image Capturing Frequency. 

Light treatment Lettuce population Cultivation weeks Total images 

Red and blue spectrum 20 6 360 

White spectrum 20 6 360 
 
 
Aquaphotomics-based water NPK detection modeling 
Aquaponic pond water samples amounting to 1.5 L per pond location were collected from an 

outdoor aquaponic pond. The elevated pond is man-made with dimensions of 10×5×5 m3 and the wall 
material is concrete. To not greatly affect the nutrient concentrations in water using fish pellets, Azolla 
pinnata was fed to the fishes. Two zones namely, middle (zone 1) and sidewalls (zone 2), were 
considered in water extraction. Zone 1 was stratified into 3 layers: Water surface (location A), middle 
layer (location B), and bottom layer (location C). Zone 2 was stratified into 2 layers: The waterater 
surface (location D) and the middle layer (location E). The basis of this water layer zoning and 
stratification is the sloped floor of the pond. A total of 7.5 L of water samples were brought back to the 
laboratory for aquaphotomics testing. Temperature perturbation was done using a hot plate in the 
temperature range of 16 to 36 °C with increments of 2 °C per water sample test resulting in 11 
temperature levels. For each temperature level, 3 different water samples per extraction location were 
tested using UV-Vis 1900 spectrophotometer (Shimadzu) in the range of 100 to 1000 nm. This wide 
spectral range is considered because no known macronutrient ion or elements is especially characterized 
on the selected pond water samples. At the same time, when water samples are heated in a beaker placed 
at the top of the hot plate, temperature, pH, and electrical conductivity (EC) sensors connected to the 
Arduino UNO microcontroller were properly submerged in water to verify the changes in the water 
physical signatures (Figure 2). Overall, the process of temperature perturbation and transferring of water 
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samples to 1 cm quartz crystal cuvette was performed 55 times. Water absorbance spectral pattern 
(WASP) in the form of aquagrams was generated by employing singular value decomposition in selecting 
the most significant pond water spectral band. After determining the spectral bands suitable for nitrate, 
phosphate, and potassium absorbances through wavelength sweeping aquaphotomics approach, direct 
spectroscopy was performed using cadmium reduction with NitraVer 5 nitrate reagent powders, Hach 
method with PhosVer3 phosphate reagent powders, and tetraphenylborate method using Potassium 3 
reagent powder pillows for nitrate, phosphate, and potassium concentrations, respectively. The NPK 
concentrations were correlated and symbolically expressed using multiple linear regression. 
 
 
 

 
 
 
 
 
 

Figure 2 System instrumentation architecture in the sensor-based acquisition of physical limnological 
data. 

 
 
Vegetation Segmentation 
Vegetation segmentation is a process that subtracts the non-vegetative pixels from the image to 

highlight the region of interest, which is lettuce leaf canopy in this study, for further analysis. Graph-cut 
segmentation is performed using lazysnapping (Figure 3a) in Matlab R2020a. It starts with loading the 
raw digital image, transforming the RGB image into CIELab (Figure 3b), foreground and background 
lazysnapping with superpixels of 45,100, image masking (Figure 3c), image filtering using hole fillings, 
and removal of unconnected regions with less than 150 pixels and overlaying of the masked image and 
annotation (Figure 3d). The range for L, a*, and b* components is 0 to 100, −86.1827 to 98.2343, and 
−107.8602 to 94.4780, respectively. The annotated image is the ground truth image that will be the basis 
for comparing the results of color space analysis for verification.  

Each raw image has 27×106 pixels. The binary image result of each color space was evaluated using 
sensitivity and specificity. In the context of color space analysis in computer vision, sensitivity describes 
how well the color space identifies a vegetation pixel as part of the vegetative object. It is mathematically 
defined by the ratio of true positive (TP) and the sum of TP and false-negative (FN) (1). Specificity 
determines how well the specific color space identifies a non-vegetative pixel and is mathematically 
defined as the ratio of true negative (TB) and the sum of TN and false positive (FP) (2). Four color spaces 
were discriminated namely, RGB (Figure 3e), HSV (Figure 3f), CIELab (Figure 3g), and YCbCr 
(Figure 3h). The channel thresholds configured for the RGB color space are 64 to 255 for red, 125 to 255 
for green, and 0 to 139 for blue. The channel thresholds configured for the HSV color space are 0.098 to 
0.514 for hue and 0 to 1 for both saturation and value. The channel thresholds configured for the CIELab 
color space are 1 to 100 for lightness, −23 to 4.436 for red to green chromaticity, and 2.979 to 59.418 for 
blue to yellow chromaticity. The channel thresholds configured for the YCbCr are 46 to 232 for the luma 
component, 0 to 94 for the blue-difference component, and 0 to 255 for the red-difference component. 
These thresholds correspond to the lettuce leaf canopy.  The color space with the highest sensitivity and 
specificity was selected for vegetation segmentation in batch processing. This consideration is necessary 
because the selected lettuce crops in this study were grown in white, red, and blue lights separately.  
 
Sensitivity = TP / TP + FN                         (1) 
 
Specificity = TN / FP + TN                         (2) 
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Spectro-textural-morphological leaf phenotype signature extraction and selection 
The architecture of the leaf canopy was characterized by extracting its spectral, texture, and 

morphology signatures. The RGB, HSV, L*a*b*, and YCbCr reflectances were quantified per image 
using the masked color space image, then, getting the mean value to generate the numerical value. Gray 
level co-occurrence matrix (GLCM) features namely, contrast, correlation, energy, entropy, and 
homogeneity were extracted using the binarized image. The only morphological feature extracted is the 
leaf canopy area (cm2) by multiplying the leaf area in pixel to a conversion factor of 6.60847e-6 derived 
by using a 1 inch by 1-inch plate captured by the same image acquisition system by the lettuce leaf 
canopies. Overall, there are 18 leaf architectural features analyzed in this study.  

Neighborhood component analysis (NCA) and ReliefF algorithm were employed for feature 
selection. NCA was configured using limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 
algorithm as the solver with hessian history size of 15 and ‘weakwolfe’ as the line search method. The 18-
feature array of leaf canopy was inputted separately to the NCA and ReliefF algorithms. Then, principal 
component analysis (PCA) using listwise value treatment was performed for determining the optimal 
minimum number of features necessary to replicate almost 100 % of the original data. In this study, PCA 
is configured to consider components with at least 0.5 eigenvalues. 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Graph-cut segmentation through (a) lazysnapping, (b) CIELab transformation, and (c) 
vegetation pixel masking that results in (d) ground truth image. Annotated color space analysis of the 
vegetative pixels using (e) RGB, (f) HSV, (g) CIELab, and (h) YCbCr spectrums.   

 
 
Aquaponic water macronutrient prediction using machine learning 
Machine learning is a subset of computational intelligence that can be constructed using feature-

based or direct image-based using deep learning. In this study, feature-based machine learning modeling 
was performed using general processing regression (GPR), support vector machine (SVM), regression-
based decision tree (RTree), ensemble tree (TEns), and recurrent neural network (RNN) in predicting 
nitrogen, phosphate and potassium concentrations based on the raw 18-feature array and the hybrid PCA-
NCA-ReliefF reduced 3-feature array. These 5 machines learning models have a different level of 
architecture abstraction, complexity, space consumption, and prediction performances. The GPR model 
using 18-features (GRP18) as input was optimized using squared exponential as the kernel function, 
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constant basis function with a beta of 221.4561 and sigma of 31.0754, exact predict and fit methods with 
an active set size of 403, and random active set method. For GPR with a 3-feature array as input (GPR3), 
it was optimized using a beta of 219.8747 and sigma of 39.2028. The SVM model using 18-features as 
input (SVM18) was optimized using a box constraint of 97.515 with a kernel scale of 0.90885, epsilon of 
0.78584, bias of 116.8258, and sequential minimal optimization (SMO) as the solver. For SVM using 3-
features as input (SVM3), it was optimized using a box constraint of 5.0623 with a kernel scale of 8.012, 
epsilon of 0.025673, and bias of 132.1531. The RTree model with 18-features as input (RTree18) was 
optimized using 28 minimum leaf sizes. For RTree using 3-features as input (RTree3), it was optimized 
using a minimum leaf size of 48. The TEns model with 18-features as input (TEns18) was optimized using 
32 minimum leaf size and least-squares boosting (LSBoost) method. For the TEns model using 3-features 
as input (TEns3), it was optimized using the LSBoost method with 140 learning cycles, a learning rate of 
0.10297, and a minimum leaf size of 105. On the other hand, the RNN models, RNN18 and RNN3 have 
different model configurations in predicting macronutrient concentrations as optimized by using the 
gravitational search algorithm (GSA). 

GSA is a bioinspired algorithm (BIA) following the Newtonian laws of gravitation (3) and motion 
(4) [24-26]. It considers that the gravitational force (F) is directly proportional to the interaction of active 
mass (ma) and passive mass (mp) as affected by gravitational constant G(t) and the inverse square of the 
distance between the 2 mass agents. Likewise, agent acceleration (a) is affected by the interacting force of 
the mass of the object. In GSA, gravitational force allows each mass agent to have non-local interaction 
with other masses, thus, an information transfer is exhibited between 2 different masses in the isolated 
space system. Using Matlab R2020a platform, GSA starts with constraints and initializing object 
properties namely, position, inertial, active gravitational, and passive gravitational masses, randomly 
(Figure 4a). It should be taken into consideration that GSA considers the performance of each agent by 
its mass in which the lighter agent moves toward the heavier agent as affected by the gravitational force. 
This GSA optimization technique is used to minimize the fitness function for NPK concentrations (5-7). 
The developed fitness functions have the number of hidden artificial neurons on the 1st, 2nd and 3rd layers 
(N1, N2, N3) of the RNN model. For this experiment, Ns has been configured to have a value in the range 
of 25 to 1000. The mean square error (MSE) exhibited by a dummy RNN model is intended to be 
approaching 0 with a correspondingly low number of hidden artificial neurons. Using the NPK 
concentration fitness functions, the gravitational and inertial masses were evaluated as they also control 
the agent velocity and acceleration in specific search space dimensions. Then, the position of the agents is 
continuously updated by basing on the heavier agent mass and it converges when the stopping criteria of 
250 iterations were reached. The recorded global best fitness is the local best fitness in the last iteration 
during convergence, hence, its position is considered as the optimum global solution for the provided 
NPK concentration fitness functions. Hence, GSA optimized both RNN18 and RNN3 to have 487-356-67 
hidden artificial neurons (N1-N2-N3) for the nitrate concentration prediction, 465-422-12 neuron 
architecture for phosphate concentration prediction, and 963-110-32 neuron architecture for potassium 
concentration prediction (Figure 5).  
 
F = G(t) (mamp / r2)                         (3) 
 
a = F / m                            (4) 
 
MSEN = 1128.1 + 0.495N1 – 0.329N2 + 0.98N3                     (5) 
 
MSEP = 1103.3 + 0.3936N1 – 0.184N2 + 0.701N3                             (6) 
 
MSEK = 1299.9 + 0.525N1 – 0.406N2 + 1.16N3                      (7) 
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Figure 4 Gravitational search algorithm for optimizing the mean square error of the NPK concentration 
fitness models (a). The best fitness curve for (b) nitrate, (c) phosphate, and (d) potassium concentrations 
as optimized by changing the number of agents from 10 to 1000. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Recurrent neural network architecture with GSA-optimized number of hidden artificial neurons 
for (a) nitrate, (b) phosphate, and (c) potassium concentration predictions. 
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Model evaluation metrics and statistical analysis 
The performance of the developed feature-based machine learning models was evaluated using 

RMSE, R2, MAE, and inference time from training, validation, and testing stages. Significant data 
correlations were considered at α ≤ 0.05 using Minitab 19 (Minitab, LLC).  
 
Results and discussion 

Color space analysis 
The resulting color marker mean values serving as the threshold for the lettuce pixel region in RGB, 

HSV, CIELab, and YCbCr color spaces are presented in Table 2. Through color space analysis, the most 
suitable color space for vegetation segmentation in this study was determined. All pre-selected color 
spaces have very high specificity performance with CIELab as the most accurate with 99.99 % (Table 3). 
It means that any of the color spaces can be considered to correctly selecting non-vegetation pixels. 
However, the accuracy in determining the ROI vegetation pixels must be strictly considered. In this case, 
CIELab extends its quality performance to 98.721 % sensitivity which is 41.754 % higher than YCbCr 
(Table 3). It was observed that RGB and YCbCr color spaces are sensitive to white chromaticity as 
resembled by the plastic cups with incident light (Figure 3). Deconstructed binarized images were 
rendered and a high amount of non-vegetation pixels were included in the annotated image. The 
representative annotated images of HSV and CIELab color spaces (Figures 3f and 3g) were very close to 
the ground truth image resulting in a 4.361% difference for sensitivity. Overall, CIELab is the optimal 
color space for vegetation segmentation in this application as it exhibited distinct clustering in the regions 
of the lettuce leaf, and red mantle, rockwool, and plastic cups. Moreover, CIELab is preferable to the 
ground truth approach of graph-cut segmentation because the process of doing it is a lot faster without the 
need to do the manual lazysnapping step and the system space-consuming super pixels. In contrast, 
YCbCr is the chosen color space when the image background is brown resembling the natural soil color 
[27]. 

 
 

Table 2 Color marker mean values for each color space in the vegetation and non-vegetation regions. 

Color space Color component Lettuce region Non-vegetation region 
RGB R 159.5 32 

G 190 62.5 
B 69.5 194.5 

HSV H - - 
S 0.5 0 
V 0.5 0 

CIELab L 50.549 0.549 
a* −9.7355 52.213 
b* 3.7025 −48.5105 

YCbCr Y 139 23 
Cb 47 172 
Cr 127.5 0 

 
 

Table 3 Average sensitivity and specificity of various color spaces. 

Color space Sensitivity (%) Specificity (%) 
RGB 76.332 99.781 
HSV 94.360 99.954 

CIELab 98.721 99.990 
YCbCr 56.967 99.663 
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Significant lettuce leaf signatures 
The 3 clusters of leaf signatures extracted in this study are the spectral, texture, and morphological 

features. Each component was extracted from the CIELab-thresholded masked image highlighting the 
lettuce vegetative pixel regions. For nitrate concentration, among the 18 extracted leaf features, a*, blue, 
and Cr are the most significant components that can easily contribute to correct nutrient concentration 
prediction (Figure 6a). For phosphate concentration prediction, a*, blue, and Cb components weighted 
the most impactful as shown in the weight spectrum (Figure 6b). For potassium concentration prediction, 
blue, a*, and Cr garnered the highest weights (Figure 6c). The PCA-projected eigenvalue of the 18 leaf 
canopy features confirmed that 3 components exhibited 98.9286 % of the total variability of the original 
dataset. This entails that a reduction from 18 to 3 features is worth it and a good approach to improve the 
computational cost of the model. Across the 3 weight spectrums, it appears that red, blue, saturation, a*, 
Cb, Cr, and energy has considerable spread and spike that indicates its relevance with the nutrient 
concentration being predicted. It is noticeable that most of the highly relevant components are spectral 
signatures of the leaf. This profoundly signifies that macronutrients have a direct effect to crop leaf color 
for both white and red-blue light treatments. It is an agreement with [28] that macronutrient deficiency, 
especially in potassium, easily results in discoloration or initiation of leaf spots. Phosphate deficiency 
results in dark green color on the upper portion of the leaves and bronze to purple on the lower surfaces. 
Likewise, lack of nitrogen in the water system for aquaponics induced the crop leaves to exhibit chlorosis 
or the yellowing of its leaf tissue as it is part of the chlorophyll molecule that is responsible for the green 
color of the plants. To standardize the input features for 3-feature array machine learning models, blue, 
a*, and Cr color components were selected based on the recommendation of the hybrid PCA-NCA-
ReliefF technique. In this study, the blue, green-red component and red minus luma color features of 
lettuce leaf canopy deliver a high sensitivity prediction performance for nutrient concentrations in water 
solution. 

The blue component of lettuce cultivated in white and red-blue treatment has a weak-to-weak strong 
positive correlation with water nitrate and potassium concentrations and weak negative correlation to 
phosphate concentration (Table 4). The green-red component of lettuce has a weak negative correlation 
with nitrate and potassium concentrations, and a weak positive correlation with phosphate (Table 4). The 
blue component from the RGB color space has an inverse relationship with the green-red component of 
the CIELab color space. The red minus luma component of YCbCr color space has a weak negative 
correlation with phosphate and a weak positive correlation with potassium concentrations for both light 
treatments. Interestingly, Cr has different characterization for nitrate concentration in the red blue (weak 
negative) and white (weak positive) light treatments. Among the 3 macronutrients, fluctuations of 
potassium concentration in the water source for the hydroponic grow bed of lettuce has the most 
substantial impact on leaf spectral information.  
 
 
Table 4 Correlation coefficient from Pearson’s correlation analysis of water NPK, and blue, a* and Cr 
lettuce leaf spectral signatures. 
 

Light treatment n Macronutrient B a* Cr 

Red and blue spectrum 360 N 0.315 −0.270 −0.340 
P −0.245 0.183 −0.231 
K 0.123 −0.231 0.175 

White spectrum 360 N 0.444 −0.276 0.192 
P −0.337 0.224 −0.114 
K 0.492 −0.271 0.284 
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Figure 6 Weight spectrum generated using hybrid NCA and ReliefF for (a) nitrogen, (b) phosphate, (c) 
potassium spectro-textural-morphological feature selection, and (d) eigenvalue projection of each 
predictor using PCA. 

 
 

Extracted macronutrient biomarkers and GSA-based optimization of RNN model 
The constructed aquagram defining the extracted macronutrient biomarkers from aquaponic pond 

water solution indicates that nitrate, phosphate, and potassium concentration can be extracted through 
aquaphotomics means in the ultraviolet, visible light, and near-infrared spectrums (Figure 7a). The 11 
water absorbance wavelengths are 195, 200, 205, 210, 215, 415, 235, 275, 415, 765, 835, and 840 nm. 
These wavelengths are the characteristic spectral coordinates that resemble the water spectral absorbance 
pattern. Since the pond water has been nourished by fishes for more than 3 months before the start of 
lettuce cultivation, water is rich with essential nutrients for plant intake. Water samples from 5 different 
pond locations in the aquaponic pond generated a water spectral absorbance pattern that highlights the 
205, 840, and 765 nm wavelengths across the 100 to 1000 nm span that are considered as the wavelength 
protocol for nitrate, phosphate, and potassium concentrations respectively [29-31]. Different organic 
compounds have been detected also in the aquagram (Figure 7a) but only NPK are important in this 
study. Nitrate, phosphate, and potassium concentrations are highly present in the water surface in the 
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middle section (location A) of the pond. The bottom layer (location C) of the pond is rich in phosphate 
and potassium. The pond sidewalls (locations D and E) happened to have a high amount of nitrate ions. 
This slightly uneven distribution of macronutrients is exhibited in the artificial aquaponic pond because of 
the presence of large stones at the pond floor and poor aeration. However, in this study, this setup is 
acceptable as different macronutrient concentrations must be extracted from water samples.  

The impact of increasing artificial hidden neurons on the 3 hidden layers of the RNN model through 
gravitational search algorithm was visualized in separate 4 dimensions for nitrate, phosphate, and 
potassium concentration prediction models (Figures 7(b) - 7(d)). The fitness function for nitrogen (5), 
phosphate (6), and potassium (7) concentration MSE prediction characterization as affected by the 
combination of the 3 hidden layers of artificial hidden neurons were inferred for a minimization 
optimization. This means that the position of the global minimum MSE attainable in the entire search 
space is considered as the solution to the problem or the optimum value of the artificial neurons on the 3 
hidden layers. The implementation of the gravitational search algorithm in (1) resulted in Figure 7b that 
projects the combination of 487-356-67 (N1, N2, N3) to have the global minimum MSE, thus, considered 
as the ideal network for nitrate prediction. Concerning the number of agents that is the only 
hyperparameter that was tweaked in the optimization process, the fitness function value substantially 
approaches 0 as the number of agents is configured smaller. Hence, for the RNN nitrate concentration 
model, the ideal number of agents is 60. For the phosphate prediction RNN model, 10 agents as the 
starting masses yielded the global minimum of −3.19389 MSE with optimum artificial neuron 
combination of 465-422-12 (Figure 7c). For the potassium prediction RNN model, 50 agents resulted in 
the global minimum of −3.1259 MSE with an optimum artificial neuron combination of 963-110-32 
(Figure 7d). With other neuron combinations, it is evident that the trend is erratic and there is no specific 
scheme for minimizing the MSE value of the fitness functions (5), (6), and (7) other than by using the 
intelligent gravitational search optimization algorithm. Hence, using GSA the number of hidden artificial 
neurons was successfully optimized for all RNN models.  
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Figure 7 (a) Aquagram of significant water spectral absorbance pattern in the UV-V is spectrum using 
aquaphotomics and the impact of increasing artificial hidden neurons on the 1st, 2nd, and 3rd hidden layers 
of the recurrent neural network to the fitness function value in predicting (b) nitrate, (c) phosphate and (d) 
potassium concentrations.  

 
 
Water macronutrients concentration prediction 
The use of feature-based machine learning models namely generalized processing regression, 

regression-based support vector machine, regression-based decision tree, ensemble tree, and recurrent 
neural network, was effectively employed in this study to predict the macronutrient concentration present 
in water system based on the leaf signatures of lettuces that are cultivated using aquaponic approach 
(Figure 8). For nitrate concentration prediction, the hybrid NCA-ReliefF-RNN model (RNN3) bested out 
other AI networks with an accuracy of 93.61 % and an inference time of 7 s (Table 5). Even without 
feature selection to reduce the original 18 lettuce leaf signatures, RNN18, still exhibited high accuracy of 
83.49 % in the testing phase. GPR18, RTree18, RTree3, TEns18, and TEns3 have acceptable accuracy 
performances from training to validation stages, but all of these models failed to have good sensitivity for 
a unique dataset in the testing phase. GPR18 even resulted in 1.79 % accuracy during testing. On the other 
hand, both RNN variants increased their accuracy from training to validation by a factor of 1.7491 and 
2.0908, respectively. RNN3 somehow managed to improve it in the testing phase by a factor of 1.0296. 
RNN3 is 53.80 % faster than SVM3 as the slowest model for nitrate concentration prediction. For 
phosphate concentration prediction based on lettuce leaf signatures, RNN18 exhibited the best 
performance of 84.03 % accuracy (Table 5). RTree and TEns variants have very high accuracy during the 
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training stage but suddenly dropped down by a factor of 2.6958 in the validation and 1.0774 in the testing 
stage. On the other hand, RNN variants have increased their accuracy in predicting phosphate 
concentration by a factor of 3.1391. In the testing stage, RNN18 decreased by 1.0966 and RNN3 resulted 
in a better increase performance of 1.0087 that is 84.03 %. The inference time of RNN18 is surprisingly 
faster than RNN3 despite that the latter has 3 input features only. The possible reason for this 
unconventional inference time based on the complexity of the input features is the internal architecture of 
the RNN variants as they were both optimized by GSA and resulted in the same network model. Hence, 
RNN3 is the preferred model because of its higher accuracy. For the prediction of potassium 
concentration in water source based on lettuce leaf signatures, RNN3 bested out other models with an 
accuracy of 91.39 % (Table 5). SVM variants have consistently worst predictions from training to the 
testing stage. RNN3 has increased its accuracy performance by a factor of 3.7079 from training to testing. 
Among the 3 GSA-RNN3 macronutrient prediction models, the nitrate model estimates the fastest and the 
potassium model estimates the slowest. The target value versus GSA-RNN3 predictions for nitrate, 
phosphate, and potassium estimations separately signifying that the sensitivity of the developed models is 
acceptable for smart farm applications (Figures 8(a) - 8(c)). By comparing the ground truth with the 
obtained predictions from the GSA-RNN3 model, it is possible to notice that the developed model has 
high efficiency in estimating water macronutrient concentrations by just using a consumer-grade camera 
and looking on to leaf photosynthetic signatures. These facts reinforced the applicability of the GSA-
RNN3 machine learning model with a high degree of accuracy, sensitivity, and efficiency for low 
computational cost systems. Hence, the NCA-ReliefF-GSA-RNN model formally encapsulates the wNPK 
model. 

After several explorations in using gravitational search for optimizing feature-based recurrent neural 
network in predicting macronutrient concentration in water, this study successfully developed a hybrid 
NCA-ReliefF-GSA-RNN that can estimate nitrate, phosphate, and potassium concentrations with the 
accuracy of 93.61, 84.03, and 91.39 % respectively. There are previously published studies about water 
nutrient concentration estimation (Table 6). The trend of techniques in determining water nutrient 
concentration seems to be moving from plain laborious laboratory approaches [13], the aid of electronic 
sensors [11] and hybrid machine learning models based on sensor acquired data [14,18,19,23]. The study 
done by Concepcion II et al. (2020) employed the integration of aquaphotomics with multigene symbolic 
regression genetic programming (MSRGP) to predict total organic carbon (TOC) and hydrogen from the 
same aquaponic pond water samples used in the present study [18]. The basis for these predictions is 
temperature and electrical conductivity sensor data. The same pond water extraction location is evident in 
the phosphate concentration prediction based on temperature, EC, and pH sensor readings integrated with 
an adaptive neuro-fuzzy inference system (ANFIS) [19]. The resulting accuracy of ANFIS is 1.19 % 
behind the result of the NCA-ReliefF-GSA-RNN model. The closest accuracy to the developed models 
was done by Patokar and Gohokar (2018) that used a color sensor deployed in clean white containers and 
light intensifiers to see the difference of color distribution in the water when the computed amount of 
NPK chemicals were diluted into it [23]. However, its major drawback is that in the actual scenario, NPK 
fertilizers are not encouraged in an aquaponic cultivation setup such as presented in the current study. In 
ideal aquaponics, macronutrients are solely based on the interaction of microorganisms present in the 
water system and the fish effluents. The developed hybrid NCA-ReliefF-GSA-RNN is much reliable in 
the industrial-wide application as crop leaves are a direct indicator of the number of micronutrients in the 
water system. Although the NCA-ReliefF-GSA-RNN model for nitrate and potassium have a fraction 
lower than [23], still the prior has the advantage as it has been deployed in the actual smart farm setup. 
Likewise, the NCA-ReliefF-GSA-RNN requires only a digital RGB camera for the acquisition of images 
while [23] entails one color sensor for each nutrient to be estimated. The technique developed concerning 
the NCA-ReliefF-GSA-RNN model works differently as it focuses on crop leaf canopy while all 
mentioned studies in Table 6 have direct work out with the water samples. Efficiency and economical 
wise, the wNPK (NCA-ReliefF-GSA-RNN) model has the advantage. 
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Figure 8 Prediction curve of the developed models as discriminated with the target value of (a) nitrate, 
(b) phosphate, and (c) potassium concentrations in the water system.   
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Table 5 Model performance evaluation in predicting nitrogen, phosphate, and potassium concentrations 
in water system using feature-based machine learning models based on lettuce leaf signatures. 
 

Model No. of 
features 

Training Validation Testing 

RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE Inference 
time (s) 

Nitrate concentration prediction 
GPR 18 34.57 0.71 25.69 0.01 1.00 0.00 53.33 0.02 40.45 35.80 
GPR 3 42.49 0.48 32.62 41.87 0.47 32.18 45.95 0.49 36.06 46.83 
SVM 18 45.98 0.40 32.18 42.45 0.44 33.10 46.37 0.49 36.86 185.03 
SVM 3 47.05 0.38 32.63 47.14 0.34 32.26 52.44 0.33 36.88 376.61 
RTree 18 15.00 0.95 8.57 33.99 0.70 24.91 43.59 0.57 31.34 14.90 
RTree 3 21.59 0.89 13.30 39.76 0.54 31.42 44.47 0.53 36.36 25.58 
TEns 18 0.15 1.00 0.11 35.18 0.67 26.30 43.47 0.56 32.15 17.02 
TEns 3 1.48 1.00 1.13 39.76 0.54 31.42 44.47 0.53 36.36 28.54 
RNN 18 41.41 0.52 32.21 20.63 0.90 13.85 29.33 0.83 16.48 7.00 
RNN 3 43.55 0.43 33.87 20.07 0.91 13.05 19.25 0.94 11.57 7.00 

Phosphate concentration prediction 
GPR 18 16.41 0.39 12.71 15.67 0.43 12.31 16.54 0.34 12.73 47.27 
GPR 3 16.58 0.36 12.94 15.98 0.39 12.72 16.69 0.32 12.97 50.09 
SVM 18 17.44 0.23 13.59 16.78 0.32 12.84 17.10 0.30 12.90 172.19 
SVM 3 17.51 0.22 13.67 16.95 0.23 13.28 17.33 0.22 13.50 246.87 
RTree 18 8.16 0.89 5.19 16.26 0.32 12.59 16.59 0.33 12.56 24.69 
RTree 3 9.65 0.84 6.91 16.18 0.34 12.59 16.66 0.32 12.62 27.83 
TEns 18 0.10 1.00 0.07 16.26 0.32 12.59 16.59 0.33 12.56 31.27 
TEns 3 0.71 1.00 0.56 15.88 0.39 12.48 16.70 0.31 12.89 204.53 
RNN 18 16.92 0.29 13.30 9.37 0.88 7.77 10.96 0.80 9.65 7.00 
RNN 3 17.14 0.25 13.55 14.36 0.83 12.26 13.14 0.84 11.03 31.00 

Potassium concentration prediction 
GPR 18 27.45 0.80 19.41 0.00 1.00 0.00 49.77 0.03 35.63 62.17 
GPR 3 37.79 0.54 27.22 29.73 0.73 20.99 42.76 0.49 32.24 50.29 
SVM 18 43.65 0.29 28.79 40.78 0.32 26.47 48.48 0.41 33.53 340.37 
SVM 3 44.00 0.25 28.95 42.10 0.19 27.67 49.86 0.19 34.67 134.70 
RTree 18 15.71 0.93 9.38 29.89 0.70 22.05 39.96 0.58 30.39 33.34 
RTree 3 21.07 0.88 13.43 32.70 0.62 24.29 44.37 0.42 34.79 25.57 
TEns 18 0.12 1.00 0.09 29.97 0.69 21.95 40.02 0.58 30.44 30.89 
TEns 3 1.25 1.00 0.94 32.03 0.64 23.90 42.33 0.49 33.62 256.14 
RNN 18 41.66 0.34 30.12 21.91 0.93 17.50 33.86 0.80 27.12 7.00 
RNN 3 42.84 0.25 30.45 22.93 0.87 21.28 22.22 0.91 17.83 67.00 
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Table 6 Accuracy of the developed approach in determining water nutrient concentration as compared 
with other techniques. 

Author and Date Technique/Model Nutrient Accuracy 
Thirunavuakkarasu et al., 2017 [11] Sensor-based NPK Not provided 

Liu et al., 2020 [13] Diffusion method Nitrate Not provided 
Colorimetric measurement Phosphate Not provided 
Flame emission spectroscopy Potassium Not provided 

Shi et al., 2017 [14] Generalized likelihood 
uncertainty estimation 

Nitrate 89.00 % 
Phosphate 87.00 % 

Concepcion II et al., 2020 [18] MSRGP based on water 
temperature and EC 

TOC 92.80 % 
Hydrogen 96.93 % 

Lauguico et al., 2020 [19] ANFIS based on water 
temperature, EC, and pH 

Phosphate 82.84 % 

Patokar and Gohokar et al., 2018 [23] Color sensor using a container 
with clean white material 

Nitrogen 95.47 % 
Phosphorus 73.99 % 
Potassium 96.37 % 

This study NCA-ReliefF-GSA-RNN 
(wNPK) based on crop leaf 
signatures 

Nitrate 93.61 % 
Phosphate 84.03 % 

Potassium 91.39 % 

 
 

Plant nutrient uptake response 
The plant consumes all needed nutrients from the water in an aquaponics set up to promote growth. 

The weekly average value of macronutrient concentration on the tank and the outlet pipe is shown in 
Figure 9. The nitrate (Nitratein), phosphate (Phosphatein), and potassium (Potassiumin) concentrations in 
the tank have increased from the 1st week of cultivation to the 2nd week by a factor of 2.5, 1.24, and 1.65, 
respectively. This increase is mainly because crops do not consume a large number of nutrients for that 
moment as they are in the vegetative stage. However, potassium is observed to diminished from 123.9672 
mg L-1 to 101.8542 mg L-1. This signifies that potassium as the health element for plants helps in the 
germination process. Humidity, temperature, and moisture are the main growth promoter in this stage. 
The rate of production of nitrate in the pond has been diminishing by a huge factor of 27.8829 from 
WAS2 to harvest (Figure 9a) though the fish population in the pond suffice the needs of nitrate as food 
for the lettuces. The head development stage (WAS2 to WAS5) has an average consumption of 2.1621 
mg L-1 nitrate, 2.2352 mg L-1 phosphate, and 12.9499 mg L-1 potassium. During this stage happens the 
most significant lettuce growth in terms of canopy area. The white light treatment produced an increase 
factor of 31.5877 from WAS1 state and red-blue light treatment yielded a factor of 3.33. Phosphate is 
being consumed on a greater scale from WAS 2 to 3 and WAS4 to 5 (Figure 9b). On the harvesting stage 
(WAS6), potassium was consumed significantly lower at 8.2321 % as compared to WAS5 (Figure 9c). 
The chlorophyll concentration on lettuce canopy for both light treatments distinctly intensified from 
WAS5 to WAS6 (Figure 9d) resulting in a greener leaf surface. It is supported by the increase of 230.39 
% in nitrate consumption in WAS 6 with very low 37.9921 % phosphate and 12.1475 % potassium. 
Lettuce leaf tissue expands at the average rate of 1.66708 cm2 for white light treatment and 0.23256 cm2 
for red-blue light treatment. It is evident that white light promotes better lettuce growth in terms of 
canopy span area (Figure 9d). Overall, the 40 cultivated lettuces consumed a total of 11.4937 mg L-1 of 
nitrate, 11.6048 mg L-1 of phosphate, and 78.6155 mg L-1 of potassium through the cultivation cycle from 
vegetative to harvest stage. The use of the developed wNPK model determined macronutrients present in 
water sources easier, economical, and efficient.  

Walailak J Sci & Tech 2021; 18(10): 18273 
 

17 of 20 



Leaf Signature-Based Water Nutrient Estimation Ronnie CONCEPCION II et al. 
http://wjst.wu.ac.th 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 Leaf canopy area response to nutrient uptake in terms of (a) nitrate, (b) phosphate, (c) 
potassium, and the (d) representative lettuce samples for each light treatment from 1st to 6th week after 
sowing (WAS) 

 
 

Conclusions 

Nutrient management system in aquaponic cultivation is of utmost importance for the 
implementation of computer vision and computational intelligence as planted crops in a controlled 
environment are dependent on efficient automation for growth promotion. Aquaphotomics analysis 
confirmed that 205, 840, and 765 nm wavelengths are the spectral protocol for nitrate, phosphate, and 
potassium determination in water. The reduction of leaf photosynthetic signatures from 18 to 3 as input 
predictors to the machine learning model resulted in lower system computational cost. The use of 
gravitational search algorithm converged to the optimal RNN network architecture resulting in higher 
sensitivity in predicting macronutrients. The developed wNPK model is a hybrid of neighborhood 
component analysis, ReliefF, gravitational search, and recurrent neural network that predicts aquaponic 
pond water macronutrient concentrations in terms of nitrate, phosphate, and potassium based on lettuce 
leaf canopy photosynthetic signatures through a digital camera. It predicts NPK with 93.61, 84.03 and 
91.39 % accuracy, respectively, besting out other feature-based machine learning models such as GPR, 
SVM, RTree, and TEns. Out of the 3 macronutrients, potassium significantly helps in the germination of 
seeds and nitrogen plays an important role in intensifying the chlorophyll at the harvest stage. Hence, leaf 
canopy photosynthetic signatures are a substantial indicator of the existing macronutrient nutrients on its 
water source. The results in this study pointed out that the use of a single camera to measure both water 
macronutrient concentrations and crop signature at the same time is an innovative, efficient and 
economical approach for precision farming.  
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