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Abstract 

The steady axisymmetric flow and heat transfer of a thermodynamically compatible third grade 
fluid over an isothermal radially stretching sheet is investigated. A nonlinear stretching sheet is 
considered. The governing boundary layer equations for velocity and temperature fields are reduced to a 
system of ordinary differential equations by using appropriate similarity transformations. The resulting 
equations are then solved analytically by the homotopy analysis method (HAM). The developed 
analytical expressions for the velocity and temperature fields are graphically presented and influence of 
the pertinent parameters on the velocity and thermal boundary layers are discussed in detail. In addition, 
the skin friction coefficient and local Nusselt number are tabulated for several influential parameters. 
Increases in viscoelastic and third grade parameter increase the boundary layer thickness, whereas the 
cross-viscous parameter decreases the boundary layer thickness. Discrete squared residual has been 
plotted for the different order of approximations and the results have been plotted with the maximum 
accuracy. 
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Introduction 

Non-Newtonian fluids are extensive in their areas of applications owing to their behavior being 
encountered in almost all the chemical and allied processing industries. Non-Newtonian flows are not 
only dominantly interested by researchers but also by process and chemical engineers, who deal with the 
complex materials (such as foams, slurries, emulsions, polymer melts and solutions, etc.). Various fluids 
models have been proposed in the literature, which explore the different behaviors of non-Newtonian 
fluids. These models include the differential type, rate type, integral type and power-law models. The 
differential type fluids are important as they explore the features such as normal stress effects, shear 
thinning and shear thickening effects. The second grade fluid, which only explains the normal stress 
effects is the simplest subclass of the differential type fluids. However, the third grade fluid, in addition, 
exhibits the properties of shear thinning and shear thickening. The visco-elastic materials such as 
Sorbothane is a synthetic polymer used as a shock absorber and vibration damper. 

Some investigations dealing with the flow and heat transfer of a third grade fluid are reported in    
[1-4]. The boundary layer flow over a stretching sheet has significant technological applications in 
chemical and metallurgical industries such as; continuous stretching of plastic films, drawing of copper 
wires, polymer extrusion, hot rolling, metal extrusion, glass fibers etc. Investigation of heat transfer 
phenomena over a stretching surface is of great importance in several engineering applications. Such 
applications include heated materials travelling between a feed roll and a wind up roll or on a conveyer 
belt and the materials manufactured by extrusion processes. Crane [5] initiated the study of viscous flow 
over a stretching surface by considering steady two-dimensional boundary-layer flow over a uniformly 
stretching sheet and found the closed form solution. He also reported the heat transfer analysis for this 
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problem. Later on this problem attracted various researchers and several extensions have been made by 
invoking different interesting features [6,7]. Some very recent studies regarding the boundary layer flow 
and heat transfer of a third grade fluid over stretching sheet are provided in [8-13]. 

A literature survey indicates that a lot of work has been done on boundary layer flow and heat 
transfer over a nonlinear planner stretching sheet. However, rare investigations exist regarding 
axisymmetric flow and heat transfer over a nonlinear radially stretching sheet. To the best of our 
knowledge not a single attempt is made so far, which deals with the boundary layer flow and heat transfer 
of a third grade fluid over a nonlinear radially stretching sheet. The present investigation attempts to fill 
this gap and extends the literature to the boundary layer flow and heat transfer in a third grade fluid due to 
a radially moving sheet with nonlinear velocity. 
 
Materials and methods 

Mathematical modeling 
 

 
 
Figure 1 Physical model and coordinate system. 
 
 

Consider the quiescent incompressible third grade fluid in which steady, laminar and axisymmetric 
flow is induced due to stretching of the sheet along the radial direction with a nonlinear velocity given by 

( ) nU r cr  with n as a positive real number and c  0 . We assume that the sheet is isothermal with a 

uniform temperature wT  while T  is the ambient fluid temperature with wT T  as shown in Figure 1. 
The equations governing the steady flow of an incompressible fluid in the absence of body forces are; 
 

· 0, V                   (1) 

. ,d
dt

 
V

τ                  (2) 

 
where   is the fluid density, V the velocity field and τ  the Cauchy stress tensor which in a third grade 
fluid is given by [14]; 
 

   2 2
1 1 2 2 1 1 3 2 1 2 2 1 3 1 1.p tr             τ I A A A A A A A A A A                              (3)  

 
Here p  is the pressure, I  the identity metric,   dynamic viscosity, i   1,2 ,i   i  1,2, 3i   the 
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material constants, and iA  1,2, 3i   the Rivlin-Erickson tensors given by; 

   1 grad grad ,
T

 A V V               (4) 

   1
1 1grad grad ,  2, 3.

    
Tn

n n n

d
n

dt

A
A A V V A         (5) 

 
Fosdick and Rajagopal [15] have shown that the third grade fluid is consistent with thermodynamics if 
material constants satisfy; 
 

1 1 2 3 1 2 30,  0,  24 ,  0,  0.                      (6) 
 
In view of conditions Eq. (6) the Cauchy stress tensor Eq. (3) reduces to; 
 

 2 2
1 1 2 2 1 3 1 1.        p trτ I A A A A A           (7) 

 
For the velocity field [ ( , ), 0, ( , )]u r z w r zV =  and Cauchy stress tensor Eq. (7), the governing equations 
for the steady flow are given by; 
 

0,
 

  
 
u u w

r r z
                  (8) 

,
                 

rr rz rrT T T Tu u
u w

r z r z r
           (9) 

 1
,

              
zz

rz

Tw w
u w rT

r z r r z
                   (10) 

 
where 
 

22 2

1 2
2 2 2 

                                      
rr

u u u u w u w
T p u w

r r z r r z rr

2 2

2 4
                         

u u w

r z r
  

2 2 22

3 2
4 2 2 ,

                                                   

u u u w u w

r z r r zr
          (11) 

2 2

1 22 2
2 2 4   

               

u u u w u u u
T p

r r r r z r r
2 2 22

3 2
4 2 2 ,

                                                 

u u u w u w

r z r r zr
                (12) 

22 2

1 2
2 2 2 

                                      
zz

w w w w u u w
T p u w

z r z z z z rz
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2 2

2 4
                         

w u w

z z r
  

2 2 22

3 2
4 2 2 ,

                                                              

w u u w u w

z z r r zr
          (13) 

1 
                                               

rz
u w u w u w u w

T u w
z r r z z r r r z z

 

23 2
                                         

u u w w u w u w

r z r z r z z r
2 2 22

3 2
2 2 2 .

                                                                 

w u u u w u w

r z z r r zr
               (14) 

 
By using the usual boundary layer approximations, the governing boundary layer equation for a third 
grade fluid is; 
 

2 3 3 2 2 2 2
1

2 2 3 2 2 2
2 4 3






                                       

u u u u u w u u u u u u w
u w u w

r z z z r z r zz r z z z z z
 

22 2 2 2 2
2 3

2 2 2 2
2 3 2 6 ,

 
 

                                  

w u u u u u u w u u

z z r z r z zz z z z
             (15) 

 
where   is the kinematic viscosity. The relevant velocity boundary conditions are; 
 

( ) , 0 0,   nu U r cr w at z                    (16) 

0 .  u as z                                (17) 

 
The introduction of the following similarity transformations; 
 

2 1/2 1/2( , ) Re ( ),  and Re ,    
z

r z r U f
r

                  (18) 

 
where   is the dimensionless similarity variable, Re Ur


  the Reynolds number and ( , ) r z  the Stokes 

stream function defined by 1 


 
r z

u  and 1 



r r

w  results in; 

 

1/2 3 1
( ) and Re ( ) ( ) .

2 2
             

n n
u Uf w U f f                (19) 

 
Using the above similarity relations, the continuity Eq. (8) is identically satisfied and Eqs. (15) - (17) lead 
to; 
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   22
1

3 3
( ) 3( 1) 3( 1) 2 1

2 2
 

                       
ivn n

f ff n f n f f n f ff n f f  

     2 2
2

3 5
2 1 0,

2
  

                  

n
f f f n f f f f               (20) 

(0) 0, (0) 1 and ( ) 0.    f f f                     (21) 

In the above equation  1
1




  U

r
  and 2

2



  U

r
 are the dimensionless measures of the second 

grade fluid parameters 1 and 2 , respectively and 
3

3
2 3



 
  U

r
 is the dimensionless measure of the third 

grade fluid parameter when dropping the asterisks for simplicity. 
The solution of the boundary layer equations is often used to determine the technically important 

wall shear stress 
0
.

rz z
 For the dimensionless wall shear stress we introduce the local skin friction 

coefficient fC  given by; 
 

0
21

2

.



 rz z

fC
U

                        (22) 

 
Utilization of the above expression for rz  and the above introduced similarity transformations, the local 
skin friction coefficient becomes; 
 

        31/2
1 2

1 7 3
Re 0 0 2 0 2 0 .

2 2
  

      f
n

C f f f f               (23) 

 
Heat transfer analysis 

Heat transfer takes place from an isothermal radially stretching sheet to the ambient fluid at 
temperatures wT  and ,T  respectively. Assuming that the radiant heating is negligible and the viscous 
dissipation and heat generation are absent, the governing energy equation for temperature field 

 ,T T r z  is given by; 

 
2 2

2 2

1
, 

                      
p

T T T T T
c u w

r z r rr z
                 (24) 

  
where pc is specific heat at constant pressure and   the thermal conductivity of the fluid. 

Use of the usual thermal boundary layer approximations, the above energy equation reduces to; 
 

2

2
.




  
 

  p

T T T
u w

r z c z
                                                         (25) 
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The temperature boundary conditions for the above equations are; 
 

  at  0, wT T z                        (26) 

 as .  T T z                       (27) 

 
Defining the dimensionless temperature; 
 

  ,  






w

T T

T T
                       (28) 

and utilizing the similarity transformations Eq. (18) results in; 
 

3
Pr 0,

2
 

  
n

f                       (29) 

   0 1,    0,                          (30) 
 

where Pr



 pc

 is the Prandtl number. 

For the dimensionless wall heat flux  
0
, 

 
  T

w z z
q  we introduce the local Nusselt number 

rNu  given by; 
 

0 .

 








T
z z

r
w

r
Nu

T T
                        (31) 

 
Using the above similarity transformations, the local Nusselt number becomes; 
 

 1/2Re 0 .  rNu                       (32) 
 

Solution of the problem 

The system of nonlinear ordinary differential equations Eqs. (20) and (29) are solved analytically 
with the boundary conditions Eqs. (21) and (30). The analytical solutions are obtained by means of the 
homotopy analysis method (HAM). For the HAM solutions we choose the initial guesses  f 0  and 

  0  as; 
 

       f         0 01 exp ,  exp ,                   (33) 
 
and the auxiliary linear operators as; 
 

   f
d d d d

d dd d
   

 
  

   
3 2

3 2
,   .                    (34) 
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Now by letting f  and   as the non-zero convergence control parameters we can construct the zero 

and higher order deformation problems in view of Refs. [16,17]. The parameters f  and   adjust and 
control the convergence of the series solutions and the optimal values of these parameters are chosen by 
minimizing the discrete squared residuals (see Ref. [18] for more detail) which are defined by; 
 

 
2

,
0 0

1
,

1


 

           
  

N m

f m f j
j i

E N F i
N

                   (35) 

 
2

,
0 0

1
,

1  
 

           
  

N m

m j
j i

E N G i
N

                   (36) 

 
where 1N   are the number of points chosen over the domain in which the nonlinear equations 

   0 fN f    and    0   N  are stated. 
 
Results and discussion 

The objective of the present analysis is to examine the flow and heat transfer characteristics of an 
incompressible third grade fluid over an isothermal radially nonlinear stretching sheet. The influence of 
the stretching parameters n, viscoelastic parameter 1  cross-viscous parameter 2 , third grade parameter
 and Prandtl number Pr on flow and heat transfer is the main interest of study. Further, the skin friction 
coefficient and local Nusselt number are also analyzed for different values of these parameters. 

The velocity at the boundary is dependent upon the stretching parameter n. The stretching parameter 
n greatly affects the velocity and temperature profiles of the fluid and is illustrated in Figure 2. From 
Figure 2(a), it is noted that the boundary layer thickness decreases as the value of n is enhanced. It is due 
to the fact that the greater velocity at sheet along the inertial forces tends to reduce the effect of viscous 
forces in the boundary layer. As a result the radial component of velocity asymptotically reaches the free 
stream value rapidly. Figure 2(b) shows that n strongly affects the temperature profile. The temperature 
profile and the thermal boundary layer decrease by enhancing the value of n. The increased velocity at the 
wall forces the cooler ambient to rush towards the hot sheet thus reducing the temperature within 
boundary layer. 
 

  
Figure 2 Effects of the stretching parameter n on the velocity and temperature profiles when 
    1 2 0.2  and Pr  0.7  are fixed. 
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Figure 3 elucidates the effects of the viscoelastic parameter 1  on the flow and heat transfer in a 

third grade fluid. This figure reveals that 1  impacts the velocity boundary layer strongly as compared to 
the thermal boundary layer. Figure 3 shows that the velocity and boundary layer thickness amplify due to 
retarded diffusion in momentum transfer but opposite effects are observed for the thermal boundary layer. 
The effect of the cross-viscous parameter 2  on the flow and heat transfer is presented through Figure 4. 
The figure shows that the behavior of velocity and temperature profiles are contrary to the effect of 
viscoelastic parameter. 

The influence of third grade parameter   on the velocity and thermal boundary layers is 
demonstrated in Figure 5. The augmentation in the non-dimensionless third grade parameter   results in 
thickening of the boundary layer due shear thickening effects of the fluid (Figure 5(a)). But,   affects 
the thermal boundary layer oppositely by decreasing the temperature profile, as the shear thickening 
retards the heat transfer (Figure 5(b)). 
 
 

  
Figure 3 Effect of the viscoelastic parameter 1  on the velocity and temperature profiles when 

n    21.5, 0.2  and Pr  0.7  are fixed. 
 
 

  

Figure 4 Effects of the cross-viscous parameter 2  on the velocity and temperature profiles when 

n    11.5, 0.2  and Pr  0.7  are fixed. 
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Figure 5 Effects of the third grade parameter   on the velocity and temperature profiles when 
n    1 21.5, 0.2  and Pr  0.7  are fixed. 
 
 

The Prandtl number, Pr significantly controls the thermal boundary layer. Graphs in Figure 6 
elucidate the behavior of the thermal boundary layer thickness while Pr is enhanced. It is quite obvious 
from this figure that for the reduction in the thermal boundary layer is more due to the smaller heat 
diffusivity in the shear thickening fluid. 

 
 

 
Figure 6 Effect of Prandtl number Pr  on temperature profile when n  1.5,   1 2 0.2,   0.2

are fixed. 
 
 

In order to check the validity and accuracy of the present HAM results, we have plotted the discrete 
squared residual for different values of stretching parameter n as shown in Figure 7. The discrete squared 
residual is kept less than 10-5. It is observed that the smaller values of n converges rapidly as compared to 
the larger values. 

Table 1 summarizes the effect of the stretching parameters n, viscoelastic parameter 1 , cross-

viscosity parameter 2 , third grade parameter   and Prandtl number Pr on skin friction coefficient and 
local Nusselt number. A detail examination of this table reveals the following overall trends: the skin 
friction coefficient and local Nusselt number increase, when n , 1 ,   and Pr are increased. A decrease in 
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the skin friction is observed with an increase in 2 . This table also shows that an increase in Pr greatly 
boosts the heat transfer at the wall. 
 
 

 
 

Figure 7 Variation of discrete squared residual with order of approximation. 
 
 
Table 1 Numerical values of the skin friction coefficient and local Nusselt number. 
 

n  1  2    Pr  1/21
2
Re fC  1/2Re rNu  

1 0.2 0.2 0.2 0.7 -1.44852 -0.70260 

2 0.2 0.2 0.2 0.7 -2.11553 -0.80551 

3 0.2 0.2 0.2 0.7 -2.77500      -0.90224 

1.5 0.3 0.2 0.2 0.7 -2.02300      -0.76842 

1.5 0.6 0.2 0.2 0.7 -2.65442      -0.79956 

1.5 0.9 0.2 0.2 0.7 -3.19523      -0.82091 

1.5 0.2 0.0 0.2 0.7 -2.02145      -0.76645 

1.5 0.2 0.3 0.2 0.7 -1.65775      -0.74859 

1.5 0.2 0.6 0.2 0.7 -1.25058      -0.72804 

1.5 0.2 0.2 0.2 0.7   -1.78330        -0.75483 

1.5 0.2 0.2 0.4 0.7 -1.87524      -0.76946 

.5 0.2 0.2 0.6 0.7 -1.94893      -0.78035 

1.5 0.2 0.2 0.2 3.0  -1.83724 

1.5 0.2 0.2 0.2 6.0  -2.70159 

1.5 0.2 0.2 0.2 9.0  -3.36318 
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Conclusions 

In this paper, we have analyzed the flow and heat transfer in a third grade fluid over a nonlinear 
radially stretching sheet. The analytical solutions are obtained with great accuracy. The computations 
have indicated that; 

• An increase in the stretching parameter n significantly enhances the convective heat transfer at 
the wall. 

• A rise in the viscoelastic parameter 1 thickens the velocity boundary layer and reduces the 
thermal boundary layer thickness. 

• A variation in the cross-viscous parameter 2  reduces the skin friction at the wall and local 
Nusselt number. 

• The third grade parameter   increases the momentum boundary layer thickness and heat 
transfer at the wall. 
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