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Abstract

In this paper, the inverse problem of determining an unknown source term in a parabolic equation
with Neumann boundary conditions and final measured data is considered. Initially, the unknown source
term is estimated in the form of a combination of orthogonal functions. Since this inverse problem is ill-
posed, the Tikhonov regularization technique is applied to find a stable solution. Then, a Sinc-Galerkin
system is assembled to solve the direct problem. The approximate solution displays an exponential
convergence rate. At the end of the paper, the proposed method is tested on 2 examples.

Keywords: Nonhomogeneous parabolic equation, inverse problem, unknown source term, Sinc-Galerkin
method, Neumann boundary condition

Introduction

Inverse problems arise from many branches of science and engineering, which aim to detect some
unknown parameters from some additional data related to those problems. These types of problems have
been investigated in many recent papers [1-11]. In the present paper, we consider the following problem
of determining u(x,?) which satisfies the nonhomogeneous parabolic equation;

u—u_ =s(xt), 0<x<1,t>0, €))

with the zero initial and boundary conditions, due to the fact that, it is more convenient for the numerical
method that will be presented. Suppose that the initial and boundary conditions are as follows;

u(x,0) = u,(x), O<x<l, 2)
u 0,0 =), u(ln)=¢(), >0, G)

where u,(x), w(t) and ¢(¢f) are piecewise continuous functions in their domains and these

functions satisfy the consistency conditions u,(0) =w(0), u,(1) = ¢(0) ; then, we can apply the change

of variables;
(1) = v(x, 1)+ (M)x2 +w()x, @)
v(x, 1) = w(x,t)+u,(x)e”, %)
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where u,(x) is the modified initial condition after using the first transformation. Thus, without loss of
generality, we can consider a problem with zero initial and boundary conditions;

u,—u_=s(x,t), 0<x<l1,¢>0,

(6)
u(x,0)=0, O<x<l, (7)
u (0,0)=0,u.(1,1)=0, t>0. )

This problem is induced in the process of transportation, diffusion and conduction of natural

materials [12,13].
In this paper, in addition to the function u(x,t), the source term s(x,f) 1is also
unknown. This problem is called an inverse source problem [1]. Also for natural systems modeling, these

types of problems play important roles. For example, in the modeling of air pollution phenomena, to
determinate the unknown source term and the environmental protection, s(x,f) is considered as an

unknown source of pollutant [10,14].
The source term formation which is discussed in our inverse problem is;

s(x,t):f(x)g(x,t)+h(x,t), O<x<Lt>0, 9)

where g(x,t) and & (x,t) are known functions in their domains and [ (x) is unknown which remains to
be determined. Such problems have been investigated by many researchers theoretically [3-11]. As

mentioned in these references, an overspecified condition was also considered available at the time 7 =T.
In this work, the additional condition is taken to be point evaluations, given as follows;

u(x,T)=u, i=1..N, (10)

where 0<x, <1,i=1,...,N are N points in the (0,1). In the rest of this paper, by using an extra
condition (10), a numerical algorithm is presented for solving this inverse problem based on the Sinc-
Galerkin method.

The Sinc-Galerkin method was first presented by Stenger in [15]. Since then, the Sinc-Galerkin
method has been applied to a variety of partial differential equations [11,15-20]. References [16,17]
provide excellent overviews of existing methods based on Sinc functions. Fully Sinc-Galerkin techniques
use a Sinc function basis in both space and time. This method exhibits an exponential order of
convergence [16,17].

The paper is organized as follows:
In Section 2, the direct problem will be considered and by using the solution of this problem, a method
will be introduced for estimating the unknown function | (x) In section 3, some properties of the Sinc

function and Sinc quadrature rule will be presented and Sinc-Galerkin system for solving the direct
problem is constructed. Finally, some numerical examples are presented in section 4.
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A regularization method for estimating the unknown source term

In order to solve the inverse problem (6) - (8) according to the condition (10), the unknown function
f (x) must firstly be identified. The following theorem shows unique solvability of the direct problem

(6) - (®).
Theorem 1. Consider the problem (6) - (8). If the source function s (x,t) is bounded over its

domain and is uniformly Holder continuous on each compact subset of this domain, this problem has a
unique bounded solution.
Proof. Refer to [13].

By using the separation of variables, the solution mentioned at this theorem may be expressed as follows;
u(x, 1) =23 ( jo jol s(&,7)cos(iné)e I dEdT) cos(inx). (11)
i=0

For obtaining an estimation of f (x) in C (0,1), we can consider a finite dimensional

approximation based on the independent functions x’™',j=1,..,N by the assumptions on the source
function in the Theorem 1, where N is the number of points in (10). Assume;

f(x)~ Zc x0T (12)

The real coefficients ¢; are determined by substituting (12) in the exact solution (11) and by putting

x=xJi=1..,N, from the additional condition (10) as;
u=u(x.1)=23 (] jol s(&,7)cos(iné)e ™ T Edr) cos(inx,). (13)
i=1

This leads to a system of N equations to obtain N unknown coefficients ¢;.

Suppose that X =(c,), U=(ul.), D=(d,,), i=1,..,N where;

h(&,7) cos(kﬂf)e’(k”’z(T’”d;‘dr) cos(kzx,), (14)

d, :22(

0
k=1

O —y
Sy S——

and 4=(a;),1,j=1,..,N where;

a, =23 ([ [ &7 a(&.0) costhnt)e T O ddr ) costhx,) (1)

Also, let’s consider B =U — D, then the above system of equations will be in the form of;

AX = B. (16)
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The Tikhonov regularization method is applied to find the solution of system (16). Since the extra
condition (10) comes from practical measurements that are contaminated with random noise, numerical
reconstruction of the solution of system (16) is very difficult. By this technique, we have a minimization
problem [21] as;

min || AX — B|* +a|| X |, (17)
XeRrY

in which « >0 is a regularization parameter which controls the trade-off between fidelity to the data and
smoothness of the solution. Different methods have been applied for determining the regularization
parameter. The method which we apply is the L-curve method. The L-curve is a plot of the
squared estimate norm of the regularized solution || X | against the squared norm of the regularized

residual ||AX-B|| for a range of values of regularization parameters [22-24].

Solving the direct problem

The Sinc function is defined on the whole real line by;

sin(7x)
0
Sinc(x)=4 zx 77 (18)
1, x=0.

All Sinc methods are based on the use of the Cardinal function C(f,4) which is a Sinc expansion
of f, defined by;

C(f,h)(x) =Y f(kh)Sinc {%—k}, XeR, (19)

keZ

for 4> 0.

To construct approximations using the Sinc functions on the intervals (O,l) and (0,0), we use the

composition of these functions with the conformal maps ¢(x) = ln(1 ol ) and y(¢)=In(¢). Thus, we get
—X

the translated Sinc functions with evenly spaced nodes as;

S, (x) = Sinc (WJ S!(1) = Sinc (7(’)]{—_/1‘] (20)

where 4 >0 and k > 0 are real numbers, ;i and j are integers.

The Sinc basis functions tend to zero as ¢ approaches to . Also, in the case of Neumann boundary
conditions, the x partial derivatives of these functions are undefined at x=0 and x=1.To remedy
these, we first modify the Sinc basis functions and add some additional basis functions [17]. According to
this, suppose that;

Cx+D(x-1) i=-M_ -1,

E(x)= %, i=—-M_,..,N_, 2D
(2x+3)x%, i=N_+1,

and
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S‘j(t)a jz_Mp"'sN;y
(1) = 22
E0=1 ¢ . 22
t+1

where M, M,, N_and N, are positive integers.

t
The approximate solution for u(x,¢) in (1) is defined by the expansion;

TNCOEED WD WG ENO! 23

where m =M _+N_ +3,m, =M, +N,+2. The unknown coefficients u, are determined by;

(G- S8 F@gnn - hx) 5, (0S)(0) =0, @
t  Ox

The inner product in (24) is defined by;

(pa) =[] ], PCv.0g(x (o) w(o)dds (25)

For approximating this inner product, we use the Sinc quadrature rule for double integrals [20].
Suppose that the weight function in the inner product (25) is;

W) w(r) = J ()(:)) . (26)

A complete discussion on the choice of the weight function can be found in [17]. Substituting (23)
in (24) and applying the Sinc quadrature rule, results in a system of M xM, equations for unknown

coefficients u,

i

i=-M_-1,.,N_+1, j=-M,,..,N, +1. The following theorem shows the exponential

convergence of the Sinc-Galerkin method for solving the mentioned problem.
Theorem 2. Consider the maps ¢ and y defined in Theorem 1. For the weight function (26),

assume that F'/¢' € B(D,) and that uH € B(D,), where;
H=(1/¢") ,(¢"14). 4. (27)
Also, assume that F \/7 € B(D,,), and that uH € B(D,,), where;

H={y, ()" Iy (28)

Further, assume;
|u(x, t)| LCx“ (1= x)Pe g2 P02 (x, 1) €(0,1) x (0, 0), (29)

making the selections;
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]

where h=h_=h,,and;

h=\rd/(aM)), (31

results in;

aX

N{
Z

a,\,’ ax

}’ N’{ﬂ

M +1 M +1 M +1

(24

X t t

} (30)

"u Uy |, <KM? exp(—(rda M )'"). (32)

Proof. [17].
The r’th derivative of S,(x) with respect to ¢, at the nodal point x=x;=jh, j=-M_,..,N_is

[17]; x

d’
" —pr 2 ] =
5" =h a7 [S(, 7, )od(x)] \x:x,, r=0,1,2,... (33)

Thus, for »=0,1,2, we have;

(0) ; Loi=/
o; =[S h)od(x)]|.., = o (34)
Y 0, i=#}j,
p 0, i=],
0" =h—[S(@i,h =2 (=) 35
A N = A )
j—i
d? 3 =
8 =h’ —[S@i,h)op(x)]|,., = -_,- (36)
d¢ j _2(_1)./ ) )
Similarly, these definitions can be introduced for §7(¢) as well.
Let;
I = [@;”]mvwr, 1=0,1,2, (37
10 =[6"1,, ., [ =0,1. (38)

Also, let D(e(x)) denote the diagonal matrix with;

380 Walailak J Sci & Tech 2016; 13(5)



Solving an Inverse Problem by the Sinc-Galerkin Method Alireza MOHAMMADPOUR and Afshin BABAEI

http://wjst.wu.ac.th

e(x;), i=J, (39)

D(e(x)); = {0 i)

Consider the (m, —2)x(m, —2) matrix;

1o ol 9 1 I
1() 1() D , 40
P ((¢(x)) j+ {qﬁ'(x)(vﬁ'(x)” 0

and the (m, —1)x(m, —1) matrix;

1 . 1 7
B, {—h—tlqu(EﬂD(./y ®). (41)

In this notation, the system of equations for unknown coefficients u; in (23), from the Sinc-
Galerkin approach, takes the matrix form;

ACD,+D,CB" =F. (42)

The m_ xm_matrices 4 and D, are given by;

= |:d—Mx—1 |Z | ZZ.NX+1:|9 43)

- 1 -
D =|d D —\|d, . |, 44
K |: -M, -1 | [(¢,)3J| NY+1:| ( )

and the column vectors d_ M1 5NY+1, d. . and d v, have the components;

. 45
(ay,); = (@)J( x;)s @y ), £(¢)j( ) (45)

d_ ), = 2k (x), 46
( -Mt-1)j ((¢) j( ), (d N+1) ((¢,)2j(xj) (46)

for j=-M_-1,.,N_+1.

Also the m, xm, matrices B and D, are given by;
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)
7 N\
ﬂH
~~
~
N
N—

[e1}

— - 1
B:|:Bo ‘bN,+1:|, D:[\/y'(t)} A= . (47)

The components of the column vectors 5, . and d

N,+1

x Areas;

1%

(bN,+1 ) = [ \/}7% J(tk)’ (dNr*‘)k - [__\/%] (@), (48)

for k=-M,,..,N, +1.

The matrix Z is a m_x(m,—2) copy of 4, and BT) is a m,x(m,—1) copy of B;. Also the
(m,+2)x(m +1) matrix F contains the evaluation of s(x,f) at the points (x,¢,) for
i=-M_-1,.,N +land j=-M,.,N, +1.

Results and discussion

In this section, 2 examples are presented to verify the numerical approach. First, the values of 7,
M_, N, M, and N, are chosen by theorem 2. Also the parameters « , f,, o and f, are

determined for a given problem with a known solution, by applying the relation (29). Note that, in
practice, we place o, =8 =a,=p,=1 and d =x/2. Afterward from the relationship (30), we take

Nl

To generate the noisy data, the relationship;

M, =N,=M,=N,=M and

U’ =(u’) = (u,)+ 5.randn(N), (49)

will be used, where U =(u,), i =1,...,N are additional data, randn () is a normal distribution function

with zero mean and unit standard deviation and & indicates the level of noise.

Example 1. In the first example, we consider the Eq. (1) with g(x,f)=1, and Ah(x,?)=0. By these
assumptions, the true source function and the exact solution will be f(x)=cos(zx) and

(1-e™")cos(rx)

u(x,t)= = , respectively. We consider the additional data in the eight equidistant points

( j h,l), j=1..,8, with h :é. The L - curve for determining the regularization parameter is shown in

Figure 1 at various noise levels. The exact source function f(x) and its approximations are shown in

Figure 2, and the absolute errors are listed in Table 1. Also the Sinc-Galerkin method is applied to
provide a solution of the direct problem. Observe Figure 3 and Table 2 to compare the exact solution and
the approximate solution of the problem.
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Table 1 The absolute errors between the exact and approximate values of the source function in example
1 for the noise levels =107 and § =107,

X 5=10" 5=10"

0.1 9.03619x10° 2.75252x107°
0.2 3.65715%x107 3.23481x107
0.3 327526 %107 1.05494 x107
0.4 3.04045x107 1.61805x10°°
0.5 2.09633x107 3.49844 %107
0.6 3.56338x107 2.67991x107°
0.7 1.32249x10" 9.82808 %10
0.8 2.83532x107" 1.03352x10°°
0.9 4.38587x107 3.48541x10°

Table 2 The approximate solution and its absolute errors in example 1 at various x and ¢.

x t Approximate solution Exact solution Absolute error
1 0.0974443 0.0976357 1.08711x107
0.1 2 0.0971346 0.0963622 7.72399x10*
3 0.0968573 0.0963622 4.95173%10*
4 0.0959462 0.0963622 4.15932x10*
1 0.0599614 0.0595520 4.09414x10*
0.3 2 0.0595740 0.0595551 1.88805%107
3 0.0592736 0.0595551 2.81515%10*
4 0.0583558 0.0595551 1.19928x107
1 -0.0306047 -0.0313083 7.03611x10*
0.6 2 -0.0311836 -0.0313100 1.26336x10™
3 -0.0315407 -0.0313100 2.30728x10
4 -0.0324753 -0.0313100 1.16528x107
1 -0.0968924 -0.0963572 5.35192x10*
0.9 2 -0.0976088 -0.0963622 1.24662x107
3 -0.0980068 -0.0963622 1.64463%107
3 -0.0989532 -0.0963622 2.59102x107
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solution norm || x |

L-curve, Tikh. comer at 2.7756e-05

4476e-09

569e-08

7289e-07

-4611e-06

12774

9947

10° 10”

residual norm | Ax-b \|2

10

solution norm || xy

L-curve, Tikh. corner at 0.0010075

10 : : :
) 4476e.09
10 E
3569¢-08
728907
2
0 4611e-06 T
4739205
0
10 12774 1
; 9947
107} E
1074 L 1 1
107 10° 10° 107" 10°

residual nom | Ax-b ||2

Figure 1 The L-curve plots with the noise levels, Left: & =107 and Right: & =10 for example 1.
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Figure 2 Exact source function (Green) and its approximations in example 1 for the noise level

(Red) and & =107* (Black).
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384

Walailak J Sci & Tech 2016; 13(5)



Solving an Inverse Problem by the Sinc-Galerkin Method Alireza MOHAMMADPOUR and Afshin BABAEI

http://wjst.wu.ac.th

u(x, 3)

0.10

0.05

-0.05

~0.10

u(03, )
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0.04

0.02

0.2 04 0.6

038 1.0

-0.02

-0.04

-0.06

0.10 F——r_ exact

A - - - approximate

0.2 0.4 06 0.8 1.0

-0.05 N

-0.10 -

u(0.7, )
0.10

0.05

t 1 2 3 4 5 6 7
-0.05 k

-0.10

Figure 3 The exact solution (Red) and the approximate solutions (Blue) of example 1 with M = 16 and

6 =107 for various values of # and x.

Example 2. In this example, we assume that g(x,f)=e ' ((=1+x)*x* =2¢(1+ x(—4+ x(1+x)*))) and

h(x,)=0. By this assumption, we have u(x,f)=t*(1-x)’¢""and f(x)=e". The additional data is

considered in the 10 equidistant points with % :%. A random noise O.randn(10) is added to this

data. The exact source function and its approximations are shown in Figure 4. Figure 5 demonstrates the
L—curve of the regularization parameter determination for various noise levels. Figure 6 shows the
exact and approximate solutions of the problem. Finally, Table 3 displays the absolute error of this
approximate solution for various values of x when =4 and Figure 7 exhibits the error function of the
approximate solution in the domain {(x,7)|0<x<1,0<¢<10}.
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f(x)

2.5

2.0

0.2

0.4 0.6

0.8

Figure 4 Exact source function (Green) and its approximations in example 2 for the noise levels & =10~
(Red) and & =10"* (Blue).

L-curve, Tikh. comer at 0.00018303
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solution norm || xg
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residual norm||Ax - b ”z

47e-10

10° 10"

residual nom |[|Ax-b \|2

Figure 5 The L-curve plots of example 2 for data with the noise levels 6 =107 (Left) and 5 =10"

(Right).
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u(0.3,1) u(0.6,1)
0.04
0.020 exact
0.03 - - - approximate
0.015
0.02
0.010
0.01
0.005
t
t 2 4 6 8 10

Figure 6 The exact solution (Red) and the approximate solution (Blue) of example 2 with M = 20 and
5=10".

0.0008
Error 0.0006
0.0004
0.0002

0.0000 .4
0.0

Figure 7 The error function of the approximate solution of example 2 for the domain
{(x,0)]0<x<1,0<t<10}.
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Table 3 The approximate solution and its absolute errors in example 2 when ¢ =4.

X Exact solution Approximate solution Absolute error
0.1 0.00065584 0.00067081 1.49755%10°°
0.2 0.00229077 0.00220283 8.79386x107
0.3 0.00436123 0.00448550 1.24272x107"
0.4 0.00629539 0.00618306 1.12326x10™*
0.5 0.00754935 0.00758069 3.13452x10°°
0.6 0.00768920 0.00786601 1.76806x10™*
0.7 0.00650619 0.00641814 8.80493x107
0.8 0.00417405 0.00426625 9.22019x107°
0.9 0.00145959 0.00137995 7.96435%x107

Conclusions

In this paper, a numerical method for solving an inverse source problem was proposed. First, the

unknown space-dependent source term was approximated as a finite dimensional combination of
orthogonal functions. This approach led to a system of equations. Since this system was ill-posed, the
Tikhonov regularization technique was applied to find a stable solution. Then, the solution of the problem
was obtained by using a numerical algorithm based on the Galerkin method with the Sinc basis functions
in both space and time domains. Finally, some numerical test examples were presented to verify the
applicability and efficiency of the method.
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