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Abstract 

An analytical study of thermal radiation in the boundary layer flow through porous medium of an 
electrically conducting incompressible fluid over a stretching/shrinking sheet in the presence of convective 
boundary condition is presented. The flow is permeated by an externally applied magnetic field normal to 
the plane of flow. The equations governing the flow and heat transfer are reduced into a set of nonlinear 
ordinary differential equations and exact solutions are obtained. The effects of various parameters entering 
into the problem on the velocity and temperature distribution are discussed and depicted graphically. This 
study reveals that convective boundary condition results in temperature slip at the sheet and this 
temperature slip is significantly influenced by the Biot number. 
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Introduction 

The study of heat transport in the boundary layer is a key to the effectiveness of many thermal 
technologies. In particular, heat transport in laminar boundary layer flow over a stretching surface is of 
great importance in many industrial applications, such as extrusion of plastic sheets, glass blowing, paper 
production, drawing plastic films, cooling of metallic plates in cooling baths, and so forth. The 
investigation of drag and heat transport in such situations belongs to a different class of problems, 
distinguishing itself from the study of flows over a static surface. The boundary layer flow over a moving 
surface in a viscous fluid at rest was studied by Sakiadis [1], whose work was subsequently extended by 
many authors. After this, Crane [2] provided an analytic solution for steady flow over a two-dimensional 
linear stretching surface. Banks [3] studied the similarity solutions of the boundary layer equation for a 
stretching wall. Gupta and Gupta [4] investigated the heat and mass transfer on a stretching sheet with 
suction and blowing. Liao and Pop [5] studied the explicit analytic solution of the boundary layer equation. 
Recently, Hussain and Ahmad [6] explored the numerical solution of magnetohydrodynamic (MHD) flow 
over a stretching surface. 

The radiative heat transfer with convective boundary condition has a lot of applications in many 
engineering areas, especially in space technology and processes occurring at high temperatures. Thermal 
design for devices operating in outer space, the design of engines, and combustion chambers to operate at 
increased temperature to raise thermal efficiency, developments for the utilization of solar energy, various 
manufacturing processes including growth of translucent crystals, semiconductor processing and forming, 
and tempering glass are some applications of radiative heat transfer. In light of these applications, recently, 
Hussain et al. [7] studied the effects of radiation on free convection flow of fluid with variable viscosity 
from a porous vertical plate by applying the Rosseland approximation. Raptis et al. [8] analyzed the MHD 
asymmetric flow of an electrically conducting fluid past a semi-infinite stationary plate in the presence of 
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radiation. The effects of thermal radiation and heat transfer over an unsteady stretching surface in a porous 
medium in the presence of a heat source or sink are studied by Elbahsbeshy and Emam [9]. On the other 
hand, the heat transfer problem for boundary layer flow concerning convective boundary condition was 
investigated by Aziz [10]. Makinde and Aziz [11] studied the MHD mixed convection from a vertical plate 
embedded in a porous medium. Yao et al. [12] investigated heat transfer of a generalized 
stretching/shrinking wall problem with convective boundary condition. Some other important work related 
to the radiation phenomenon is presented by Hsiao [13, 14]. The aim of the present paper is to report closed 
form exact analytic solutions for thermal radiative slip flow over a stretching/shrinking sheet in the 
presence of convective boundary condition. 
 
Governing problem and exact solution 

Let us consider the steady two-dimensional flow of an incompressible and electrically conducting 
fluid through porous medium on a continuously stretching/shrinking porous sheet. We take the x -axis 
along the sheet and the y-axis being normal to it. A magnetic induction of strength Bo is applied 
perpendicular to the stretching/shrinking sheet. It is assumed that the velocity of the stretching sheet is 

,)( bxxuw =  where b is a positive constant. It is further assumed that constant mass transfer velocity is 

wv  with 0<wv  for mass suction and 0>wv  for mass injection, respectively. The sheet surface 

temperature is maintained by convective heat transfer at a certain value wT  which is to be determined later 

with ambient temperature ∞T . Further, the radiative heat flux in the x-direction is considered negligible in 
comparison to that in the y -direction. Under these assumptions, and neglecting the induced magnetic field 
by assuming the magnetic Reynolds number to be very small, the governing boundary layer equations are; 
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In the above equations, u  and v  are the velocity components along the −x  and −y directions 
respectively, ν  the kinematic viscosity, σ  the electrical conductivity, φ  the porosity of the medium, 

1k  the permeability of porous medium, ρ  the fluid density, L  the slip parameter having dimension of 

length, T  the temperature, pc the specific heat at constant pressure, k the thermal conductivity, rq  the 
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radiative heat flux, ∗σ the Stefan-Boltzmann constant, ∗k the mean absorption coefficient, h the 
convective heat transfer coefficient, and fT the convective fluid temperature below the moving sheet. 
We introduce the following similarity variables 
 

( ) ( ) ( ),   ,    ,   ,   η η ν η θ η
ν

∞

∞
= = − =
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T -Tcy u = cxf' v c f
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where prime denotes differentiation with respect to η , and c is a positive constant. In view of the above 
similarity transformations, the continuity Eq. (1) is identically satisfied, and Eqs. (2) - (5) now become; 
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σ 2
0=  is the magnetic parameter, ∗
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34σ  the radiation parameter, 

1

1
kK
νφ=  the 

permeability parameter, k
cpρν=Pr  the Prandtl number, and ck

h νγ =  the Biot number. Also, 

νc
vws −=  is the mass transfer parameter, with 0>s  for mass suction and 0<s  for mass injection, 

respectively. Further, c
b=α  is the stretching/shrinking parameter, with 0>α  for wall stretching and 

0<α  for wall shrinking, respectively, and 1α  the velocity slip parameter, with να cL=1 . 

The physical quantities of interest include the skin friction coefficient, fC , and the Nusselt number, 

uN , defined as; 
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It is observed that Eq. (7), together with boundary conditions (9) and (10), admits an exact analytical 

solution of the form; 
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where β  is the root of following third order algebraic equation; 
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The roots of Eq. (13) are given by; 
 

,3,2,1     ,
3
1 0

2
1

=






 ∆
++−= i

Ct
Cta

a i
iiβ                

 

where ,11 =t ,2
31

2
ι+−=t ,2

31
3

ι−−=t 3
2

4 3
0

2
11 ∆−∆+∆=C with ,3 31

2
20 aaa −=∆  

,2792 4
2
1321

3
21 aaaaaa +−=∆  ,1 1αKa =  ( ),1 12 αsKa −=  ( ),113 KsKMa ++−= αα  

( )14 ++−= KMKa α . Based on the flow configuration, only positive real root β corresponds to a 
physically feasible solution. 

Using solution (12) in Eq. (6), the velocity components are obtained in the form; 
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In order to find solution of Eq. (8), we introduce a new variable; ( ) .243
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with the corresponding boundary conditions; 
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The solution of Eq. (15) under boundary condition (16) is given by; 
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where ),( xaΓ is the incomplete Gamma function. Therefore; 
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Now, it is important to remark that, for ,01 =K  ,1=α  Eq. (12) can be reduced to the similar solution as 

obtained by Fang et al. [15], and for ,1−=α  ,01
1 ==αK  Eq. (12) reduces to the solution by Fang and 

Zhang [16]. Furthermore, for 0=M , ,01 =K  Eq. (12) reduces to the solution by Wang [17], and for 

0=M , ,01 =K  ,0=s  Eq. (12) reduces to those by Andersson [18]. For =M  ,01
1 === RK α

Eqs. (12) and (18) can be reduced to the similar solution obtained by Yao et al. [12]. 
 
Results and discussion 

This section presents graphical representations of the velocity and temperature fields considered in 
the present study. Some of the qualitatively interesting results are presented through Figures 1 - 8. We now 
proceed with the discussion and results. 

Figures 1a and 1b are plotted to see the effects of the magnetic parameter M on the longitudinal 
velocity for both stretching and shrinking sheets. It is observed that a steady decrease in longitudinal 
velocity accompanies a rise in M, with all profiles tending asymptotically to the horizontal axis. Further, the 
longitudinal velocity is observed to be a maximum at the wall. The effects of the permeability parameter K 
on the longitudinal velocity for the cases of stretching and shrinking sheets are depicted in Figures 2a and 
2b. Qualitatively, we observe a quite opposite effect of the permeability parameter to that of the magnetic 
parameter. The effect of the mass transfer parameter s on the longitudinal velocity is presented in Figure 3. 
It can be seen that the longitudinal velocity increases with the decrease of mass transfer parameter. The 
effects of the slip parameter 1α on the longitudinal velocity are shown in Figures 4a and 4b for the case of 
stretching and shrinking sheets. It is noticed that longitudinal velocity decreases by increasing the values of 
slip parameter for both stretching and shrinking sheets. 

Figures 5a and 5b depict the temperature profile )(ηθ  for different values of Biot numberγ . From 
these figures, it can be noticed that the wall temperature increases for both wall stretching and shrinking as 
the value of Biot number γ increases. However, for the same Biot number, the wall shrinking case results 
in a slightly higher wall temperature that the wall stretching case. Further, it is interesting to notice that, as 
the Biot number tends to infinity, the convective boundary condition will reduce to the prescribed wall 
temperature. In Figures 6a and 6b, the effects of radiation parameter R on the temperature profile for both 
wall stretching and shrinking cases are observed. These figures show marked increase in the temperature 
distribution, with an increase in R for both wall stretching and shrinking cases. The reason for this trend can 
be explained by the fact that higher values of the radiation parameter R leads to a decrease in the Rosseland 
mean absorption coefficient ∗k for a given k and ∞T . Thus, we can deduce from Eq. (3) that the 
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divergence of the radiative heat flux y
qr
∂
∂ rises as ∗k decreases;, consequently, the fluid temperature 

increases. Figures 7a and 7b are plotted for different values of the Prandtl number Pr for both stretching 
and shrinking sheets. These graphs reveal that the increase in the Prandtl number Pr yields a decrease in 
temperature distribution. This is due to the fact that an increase in Prandtl number means a slow rate of 
thermal diffusion. Further, it is observed that the thermal boundary layer is thicker for mass injection as 
compared to mass suction. In Figure 8, the influence of mass transfer parameter s on the temperature 
distribution is investigated. In the case of mass suction, there is a rapid decrease in temperature and thermal 
boundary layer thickness. On the other hand, for the case of mass injection, a rapid increase in temperature 
distribution and thermal boundary layer thickness may be observed. A comparison of )(ηf ′  with the 
previous literature in the limiting case is presented through Table 1. Quantification of these results shows 
that the agreement is very good. 
 
 

     
 
Figure 1 Effect of magnetic parameter M  on )(ηf ′  for (a) stretching and (b) shrinking cases, when 

,1=K  5.01 =α , and 4=s  are fixed. 
 
 

     
 
Figure 2 Effect of permeability parameter K  on )(ηf ′  for (a) stretching and (b) shrinking cases, when 

,1=M  5.01 =α , and 4=s  are fixed. 
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Figure 3 Effect of mass transfer parameter s  on )(ηf ′ , when 1== KM  and 5.01 =α  are fixed. 
 
 

  
 
Figure 4 Effect of slip parameter 1α  on ( )ηf ′  for (a) stretching and (b) shrinking cases, when 

1== KM  and 4=s  are fixed. 
 
 

   
 
Figure 5 Effect of Biot number γ  on )(ηθ  for (a) shrinking and (b) stretching cases, when 

,1=== RKM  4=s , and 7.0Pr = are fixed. 



Stretching/Shrinking Sheet with Convective Boundary Condition Masood KHAN et al. 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2016; 13(5) 
 
362 

  
 
Figure 6 Effect of radiation parameter R  on )(ηθ  for (a) shrinking and (b) stretching cases, when 

,1== KM  4=s , 7.0Pr = , and 5=γ  are fixed. 
 
 

    
 
Figure 7 Effect of Prandtl number Pr  on )(ηθ  for (a) stretching and (b) shrinking cases, when 

,1=== RKM  6=s , and 5=γ  are fixed. 
 
 

 
 
Figure 8 Effect of mass transfer parameter s on )(ηθ for stretching case. 
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Table 1 A comparison of )(ηf ′  for various values of M  when 1== αs  and 01
1 ==αK  are fixed. 

 

 
 η 

Present result Hussain & Ahmad [6] 

 )(ηf ′    )(ηf ′   

 0=M    0.0    000000.1    000000.1   

  1   36787.0    366339.0   

  2    13533.0    132009.0   

  3    04978.0    044872.0   

  4    01831.0    012267.0   

  5    00673.0    00000.0   

 2=M    0.0    000000.1    000000.1   

  1   176921.0    176925.0   

  2    031301.0    031308.0   

  3    005537.0    005523.0   

  4    000979.0    000926.0   

  5    000173.0    00000.0   

 
 
Conclusions 

In this paper, an analysis has been carried out to study the MHD flow and heat transfer characteristics 
with convective boundary condition at the wall. The flow of a viscous fluid from a permeable 
stretching/shrinking sheet through porous medium in the presence of thermal radiation was considered. The 
basic boundary layer equations have been converted into a set of non-linear ordinary differential equations 
by similarity transformations and solved analytically. In this study, it was concluded that: 

1) The velocity profile decreases with the increase of magnetic, mass transfer parameter, and slip 
parameter, while it increases with the increase of permeability parameter, for both wall stretching and 
shrinking cases. 

2) The wall temperature increases with the increase of Biot number and radiation parameter for both 
wall stretching and shrinking cases. 

3) A remarkable decrease is noticed in the temperature distribution with the increase in Prandtl 
number for both wall stretching and shrinking cases. 

4) It was interesting to notice that the convective boundary condition results in temperature slip 
relative to the convective fluid temperature at the boundary. 
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