

http://wjst.wu.ac.th Information Technology

Walailak J Sci & Tech 2017; 14(4): 315‐325.

Development of Advanced Encryption Standard Architecture with
Sbox Parity

Vanitha MOHANRAJ* and Subha SRINIVASAN

School of Information Technology and Engineering, Vellore Institute of Technology University, India

(*Corresponding author’s e-mail: mvanitha@vit.ac.in, ssubha@vit.ac.in)

Received: 21 November 2014, Revised: 21 September 2015, Accepted: 21 October 2015

Abstract

In this paper, an efficient AES (Advanced Encryption Standard) has been designed so that security
levels can be increased which is caused due to faults and errors. The AES algorithm includes mainly 4
transformations, which are Sub-byte, Shift row, Mix column, Add round key. The security of Sbox has
been increased by using even parity, which is used to detect faults rather than correction. A FIFO (First-In
First-Out) is also considered to store the parity bits of Sbox. The expected parity bit of the output is
predicted initially with the help of look up table (LUT) and compared with output parity bit. By this we
can improve the fault coverage of Sbox. Since the Sbox parity architecture involves more MUX and
XOR, their area is reduced by using the Binary Decision Diagram (BDD) approach and a pass transistor
implementation of MUX which reduces the area drastically. Verilog HDL language is used to model the
architecture and verification was done on Modelsim. Design, synthesized using a Cadence Register
Transfer Level (RTL) complier tool. The synthesized result shows that there is an area overhead of 8 %
and high fault coverage of 99.23 %.

Keywords: AES, DES, shift row, mix column, FIFO

Introduction

As the development of computer networks and communication systems are growing faster, a great
mass of information is being exchanged in communication networks. Security of data is a main concern
and plays a very important role in data transmission. NIST (National Institute of Standard and
Technology) agreed to adopt the block based cipher system, Data Encryption Standard (DES) in 1970. It
solved many security issues, but the security strength of the encryption was weak and it failed for many
attacks. Thus, NIST announced a better DES algorithm called Triple DES (3DES). This 3DES uses the
same algorithm as DES but the security level was increased in the 3DES as compared to DES. There were
2 major disadvantages in the 3DES algorithm. First, it requires 3 times the execution time of DES.
Second, DES and 3DES uses only 64 bit length block data. So the safety of the cipher system was not
satisfactory. NIST asked for a new generation cipher, called the Advanced Encryption Standard (AES) in
1997 [1].

NIST choose the Rijndael algorithm as the final AES in 2001. This AES algorithm can resist any
kind of attacks. Nowadays this algorithm has become the main source for the security of data. Authors
proposed a module for key generation which will be generated on the fly [2]. AES algorithm can resist
password attacks of any kind [3]. Sklavos and Koufopavlou [4] proposed an idea for area reduction; they
performed encryption and decryption with single core, which differs from the conventional methods.
Satoh [5] Authors substituted all the sixteen blocks using sbox during subbyte transformation which has
increased the speed but the area got increased.

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

316

Related work

Kermani et al. [6] addressed the faults that maliciously occur in the hardware implementations of
the AES which may cause erroneous output. They proposed to divide the composite field S-box and
inverse S-box into blocks and the predicted parities of these blocks are obtained. Through exhaustive
searches among all available composite fields, they found the optimum solutions for the least overhead
parity-based fault detection structure and through error injection simulations for one S-box (respectively
inverse S-box), they proved that the total error coverage of almost 100 % for 16 S-boxes can be
achieved.BDD is an alternate method to represent the Boolean functions with nodes as input variables
with two decision tree. Beg et al. [7] used ‘0’ network and ‘1’ network. Each node selection in a MUX
with the select lines as inputs. Yen at al. [8] proposed multiple stuck-at-fault detection for mix column,
sub-byte but the area overhead of Sbox is very high with low fault coverage. Many authors proposed the
fault detection of Sbox which is a part of the sub-byte transformation. Ocheretnij et al. [9] proposed parity
prediction of Sbox to detect single struck-at-faults with high fault coverage and optimum area overhead.
Bertoni et al. [10] says that the fault that occurs in the inverter can be detected by using Self-checking
invertor. Natale et al. [11] proposed Sbox with ROM implementation by using NAND gates. The area
overhead of this methodology is low with low fault coverage.

Table 1 Relationship between rounds and key length.

Type of AES Key length (Nk) Group size Round number (Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Figure 1 Block diagram of AES algorithm.

Maistri and Leveugle [12] proposed Differential Fault Analysis (DFA) and Double-Data-Rate
(DDR) are the most powerful techniques to attack cryptosystems. Satoh et al. [13] proposed a concurrent
error detection scheme for the AES algorithm. Mozaffari-Kermani et al. [14] in another paper presented 3
parity prediction schemes to make the EEA division algorithm more reliable. They have proved that the
CED division architecture using dual multiple parity prediction scheme was capable of reaching close to
100 % error coverage for single and multiple stuck-at faults. Hussain and Gondal [15] proposed an

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

317

algorithm to generate Inverse Sbox value. This gives low convolution architecture and easily achieves
high throughput and low latency.

Preliminaries

 AES Algorithm
The AES algorithm can be implemented in 3 different ways with key lengths of 128, 256, 192 bits

as shown in Table 1. Nk represents the key length (number of words in the keys, each word consists of 32
bit or 4 bytes of data). Round number (Nr) is the number of rounds needed by the AES to complete
encryption or decryption. It depends on the length and variation of the length of key. As the length of key
is increased the complexity of the algorithm also increases and so the security. We generally prefer 128
bits cipher key with block (state), which is always 128 bits.

The algorithm mainly contains 2 parts encryption and decryption. Encryption takes 2 inputs, cipher
key and plain text, which are of 128 bits. Cipher keys are of different length 128, 192 and 256 bit. Cipher
key converts the plain text into the cipher text which is of encrypted data as shown Figure 1. The AES
algorithm is performed in 4 different steps. These steps are executed in a sequential manner which form
the rounds.

A. Sub-byte transformation B. Shift row transformation
C. Mix column transformation D. Add round key transformation

State is a 44 array of bytes, which contain the 128 bits of keys and in another state the 128 bits of

plain text. At the initial stage plain text (state) is added (XORed) with the round key. This process is
called Add_round_key. The round key is generated by key expansion block. Then the round of AES starts
with the initial stage sub-byte operation followed by shift row, mix column and add round key. The
number of rounds depends on the key length. In the final rounds the mix column is removed and the
process is performed as shown in Figure 2(a), which gives the cipher text output containing 128 bits or 4
words or 16 bytes. The cipher text obtained from the encryption is transmitted through a channel (in
communication system) and at the receiver end decryption is used to convert the cipher text to plain text.
Decryption is just the inverse of encryption as shown in Figure 2(b). The key expansion block in
decryption is same as that of the encryption.

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

318

 (a) (b)

Figure 2 Various steps involved in AES algorithm.

Proposed architecture

 Sub-byte transformation
Sub-byte is a nonlinear substitution based on the Sbox matrix as shown in Figure 3. The Sbox

transformation mainly contains 2 steps.
1. Multiplicative inverse of each and every byte of the state with the irreducible polynomial	ሺX଼ ൅

Xସ ൅ Xଷ ൅ 1ሻ.
2. Apply the affine transformation over ܨܩሺ2଼ሻ.

S00 S10

S01 S11 S21

S20

S31

S30

S23S22S12S02

S03 S13 S23 S33

S’00 S’10

S’01 S’11 S’21

S’20

S’31

S’30

S’23S’22S’12S’02

S’03 S’13 S’23 S’33

S-
BOX

Figure 3 Transformation of state using Sbox.

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

319

Let I ൌ ሺi଻, i଺, iହ, iସ, iଷ, iଶ, iଵ, i଴ሻ be the input to the Transformation matrix δ and
S	ൌ ሺs଻, s଺, sହ, sସ, sଷ, sଶ, sଵ, s଴ሻ, then the output of Transformation matrix is;

ܵ ൌ ݅଻ ൅ ݅଺ ൅ ݅ଵ
ܵ ൌ ݅଺ ൅ ݅ଷ ൅ ݅ଵ	ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଷ ൅ ݅଴

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ଵ ൅ ݅଴
ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ଵ ൅ ݅଴

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଶ ൅ ݅଴
ܵ ൌ ݅ହ ൅ ݅ସ ൅ ݅ଶ ൅ ݅଴

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଷ ൅ ݅ଵ ൅ ݅଴
ܵ ൌ ݅ଶ ൅ ݅଴

Figure 4 Implementation of Sbox with a combinational circuit.

Sbox can be implemented in 2 ways, first by Look Up Table (LUT) and the second by using a
combinational circuit as shown in Figure 4. For LUT we need to store the values in the memory which
has high access delay as compared to the combinational circuit and it has lower delay and higher speed of
operation [6]. Each byte ‘I’ is transformed to ‘S’ using Eqs. (1) and (2);

ܫ ∈ ሺ2଼ሻ (1)ܨܩ

ܵ ൌ ܵ௛ݔ ൅ ௟ܵ (2)

which belongs to ܨܩሺ2଼ሻ, where;
ܺଶ ൅ ܺ ൅ ߣ ൌ 0 (3)

Now the multiplicative inverse starts which gives the output;

ܱ ൌ ܱ௛ݔ ൅ ௟ܱ ൌ ܵିଵ (4)

where ܱ௛ ൌ ܵ௛ߠ and ௟ܱ ൌ ሺܵ௛ ൅ ௟ܵሻߠ and

ߠ ൌ ܵ௛

ଶ ൅ ܵ௛ ௟ܵ ൅ ௟ܵ
ଶ (5)

where ߣ ൌ ሺ1100ሻଶ, ܵ௛, ௟ܵ are higher and lower bits of S (8 bit) matrix.

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

320

Figure 5 Multiplication in ܨܩ൫2ଶ

మ
൯.

Where ߮ ൌ ሺ01ሻଶ in Figure 5. Now the multiplication transformation takes place followed by the
affine transformation [6]. Each multiplication will take 4 addition (XOR gates) and 3 finite field
multiplication. z1, z2, z3, z4 are the outputs of the multiplication with λ in ܨܩ൫2ଶ

మ
൯ and they are given as

input to the XOR gate as shown in Figure 4. Figures 5 - 7 shows the combinational equivalent circuit to
Sbox implementation in Figure 4. From these figures the Sbox operation becomes easy to implement and
has very little delay when compared with the look up table approach [6].

Figure 6 Multiplication of λ in ܨܩ൫2ଶ

మ
൯.

Figure 7 Squaring in ܨܩ൫2ଶ

మ
൯.

 Shift row transformation

After sub-byte transformation, shift row follows. It shifts rows to the left by their row number,
which mean the zeroth row will be shifted zeroth times and second row will be shifted by 2 times to the
left as shown in the Figure 8. Parity analysis can also be done to the shift row, mix column and add round
key transformation, but the sub-byte transformation which is nonlinear in nature can affect the whole state
(44 array).

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

321

Figure 8 Transformation of shift row.

 Figure 9 Transformation of Mix column.

Mix column
Mix column operates on the 4 byte or word at a time. Multiplication takes place with each

column and is entirely based on the polynomial coefficient	ܨܩሺ2଼ሻ. This is shown in Figure 9.

 Add round key

For each round a 128 bit key is generated from the key expansion process, this key is then given to
add round key which is XOR of each column of state with each column of key as shown in Figure 10.

Figure 10 Transformation of add round key.

SBOX

Comparator

Parity from LUT

Parity

Figure 11 Even Parity implementation.

 Fault detection architecture
 We concentrate more on the Sbox, as it is non-linear and it will affect all the rounds in AES, if there
are any errors or faults in the Sbox (state). Checking these errors is very important as it provides good
security. This fault checking is done by parity bit. Prediction of parity bit is easy and provides low cost
and high security. The prediction of parity is very easy with respect to the shift row, mix column and add
round key. If any fault occurs in these steps, then the fault propagation is not that affective as it is in the
Sbox.

Sbox is implemented either by combinational circuit or by the 2569 bits memory with address
decoding technique. A solution was provided to generate the outgoing parity bit in [7] and it is shown in
the Figure 11.

The width of memory is 9 bits which contains each byte of Sbox along with the parity bit. The
parity here was considered as even parity. To increase the dependability, a new architecture is proposed
as shown in Figure 12. In this paper we mainly focus on the Sbox, as it is non-linear in nature, which has
dependency on fault propagation. This was described in [9]. If the fault occurs in the early stage of the

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

322

rounds then the fault propagation is very high up to 70 to 80 bits, which is quite very high, but if the fault
occurs in the later stage (say 8th or 9th rounds) then the fault propagation is low and may be zero some
times. So the detection of a fault at the early stages (round) makes an efficient AES algorithm.

Figure 12 shows the architecture for single stuck at fault occurrence. We consider the even parity in
the architecture. It mainly contains the combinational circuit Sbox module and LUT and some equalizers
(comparators). In the Sbox transformation, each byte of state is transformed to another state. Each byte
coming into the combinational circuit as shown in Figure 12, the even parity bit of each byte is predicted
with the XOR gate and output parity bit is predicted by taking from the output look up table of Sbox.
After execution of Sbox the parity of this executed byte is found through the XOR gate and the
corresponding input parity prediction is taken from the input LUT. These values are compared to each
with an equalizer. If they are all equal then we can conclude that there is no error or fault in the AES
Sbox.

BDD based MUX design
Since the parity implementation of the SBox requires more number of XOR gates and MUX, this

requires a huge area for implementation and it increase the area by 8 % and thereby its power and its
speed. So an alternate implementation is followed in this Sbox building i.e. Binary Decision Diagram
(BDD) using the Shannon’s decomposition theorem as shown in Eq. (6) is applied for the construction of
the MUX and XOR which reduces the area exponentially.

SBOX

FIFO

Input LUT

Output LUT

FIFO

Comparator

Comparator

Parity

Parity

Figure 12 Efficient Parity implementation of Sbox.

BDD is an alternative method to represent the Boolean functions with nodes as input variables with
2 decision trees as ‘0’ network and ‘1’ network [7,14]. Each node selection is a MUX with select lines as
inputs.

F(x1,…...xi,…….xn) = xi f(x1,….1,…..xn) + xi’ f(x1,…..0,……xn) (6)

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

323

 (a) (b) (c)

Figure 13 (a) Truth Table of an XOR gate, (b) BDD representation of XOR gate and (c) Pass Transistor
implementation of MUX.

Figure 13(a) represents the XOR gate implementation and Figure 13(b) XOR gate using the BDD
representation. Variables ‘a’ and ‘b’ are input and Edge ‘T’ represents the input variable representing the
‘1’ value and ‘E’ represent the ‘0’ value of the node. The node can be implemented with a MUX as
shown in Figure 13(c) and thereby any Boolean function could be represented using only MUX. This
drastically reduces the transistor count against the CMOS implementation because the 2:1 MUX
implementation requires 2 AND gates and 1 OR gate with 1 INV which counts to 20 transistors compared
to only 4 transistors in pass transistors implementation. The only problem with this pass transistor logic is
the logic degradation which could also be resolved by using a buffer at the end of the MUX which would
consume 2 extra transistors. So it is still more efficient in terms of area and power consumption.

Experimental results

In this section area and fault coverage calculation has been done using 0.35 and 0.18 m. The
simulation has been performed in Modelsim and Cadence Nclaunch. The synthesis has been performed in
the Cadence Register Transfer Level (RTL) compiler.

Table 2 ASIC Synthesis results showing area and power of Sbox FIFO.

Sbox with FIFO (m) Area (m2) Power (W)

0.18 26202 86240
0.35 37562 11776

Table 2 shows the area and power required by Sbox with FIFO in both 0.18 and 0.35 m. These
values are compared with the architectures proposed in the [9-11]. This architecture has been synthesized
using the same technology library. In all the above mentioned architectures Sbox have been implemented
as a combinational logic.

Table 3 shows the comparison of fault coverage and area overhead. The solution proposed in [9]
allows an area overhead of 27.62 % which is optimum and fault coverage of 91.95 %. The solution
proposed in [10] has an optimum fault coverage of 93.43 % with a high area overhead. In [11] the fault
coverage is very high with a lower overhead. Our proposed architecture has an area overhead of 8 % and
a fault coverage of 99.23 % compared with [11].

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

324

In this experiment we considered only a single stuck-at-fault and fault coverage has been measured
using Cadence-Nclaunch. By introducing the single error (fault) in Sbox we tried to determine the fault
coverage by providing effective test vectors.

Table 3 Comparison with proposed architecture.

 Area (μm2) Area overhead
Fault coverage

(Area optimization)
V Ocherentnij [9] 29432 27.62 % 91.95 %
G Bertoni [10] 23614 59.06 % 93.43 %
G Di Natale [11] 34780 8 % 99.20 %
Proposed Architecture (350 nm) 37562 8 % (Excess) 99.23 %
Proposed Architecture with BDD 10390 70 % (Less with [11]) 99.23 %

Conclusions

In this paper, we have successfully designed an efficient AES algorithm with parity of Sbox. We
have used Verilog HDL language to describe the model and verification was done on Modelsim and
Cadence Nclaunch. The area and power were calculated and tabulated in the results using Cadence RTL
compiler. There is an area overhead of 8 % due to the usage of FIFO, but the security of Sbox is improved
with a fault coverage of 99.23 % with a slight increase in power, which is negligible.

References

[1] National Institute of Standards and Technologies (NIST). Advanced encryption standard (AES).
Fed. Inform. Process. Stand. 2000; 197, 1-51.

[2] R Sever, AN Ismailglu, YC Tekmen, M Askar and B Okcan. A high sped FPGA implementation of
the Rijndael algorithm. In: Proceedings of the Euromicro Symposium on Digital System Design,
2004, p. 358-62.

[3] LIU Zhenzhen. Implementation of AES encryption based on FPGA. Mod. Electron. Tech. 2007; 23,
103-4.

[4] N Sklavos and O Koufopavlou. Architectures and VLSI implementations of the AES-Proposal
Rijndael. IEEE Trans. Comput. 2002; 51, 1454-9.

[5] A Satoh, S Morioka, K Takano and S Munetoh. A compact Rijndael hardware architecture with
SBox optimization. Lect. Notes Comput. Sci. 2000; 2248, 239-54.

[6] MM Kermani and A Reyhani-Masoleh. Parity prediction of S-box for AES. In: Proceedings of the
IEEE Canadian Conference on Electrical and Computer Engineering. Ottawa, Canada, 2006, p.
2357-60.

[7] B Azam and B Ajmal. Reliability of nano-scaled logic gates based on binary decision diagrams. In:
Proceedings of the International Conference on Modeling, Simulation and Visualization Methods.
2014, p. 1-5.

[8] CH Hsu and BF Wu. Simple error detection methods for hardware implementation of advanced
encryption standard. IEEE Trans. Comput. 2006; 55, 720-31.

[9] V Ocheretnij, G Kouznetsov, R Karri and M Gossel. On-line error detection and BIST for the AES
encryption algorithm with different SBox implementations. In: Proceedings of the 11th IEEE
International On-Line Testing Symposium. Saint Raphael, French Riviera, France2005, p. 141-6.

[10] G Bertoni, L Breveglieri, I Koren, P Maisti and V Piuri. Error analysis and detection procedures for
a hardware implementation of the advance encryption standard. IEEE Trans. Comput. 2003; 52,
492-505.

Development of AES Architecture with Sbox Parity Vanitha MOHANRAJ and Subha SRINIVASAN

http://wjst.wu.ac.th

Walailak J Sci & Tech 2017; 14(4)

325

[11] GD Natale, ML Flottes and B Rouzeyre. A novel parity bit scheme for SBox in AES circuits. In:
Proceedings of the Design and Diagnostics of Electronic Circuits and Systems. Kraków, Poland,
2007, p. 11-3.

[12] P Maistri and R Leveugle. Double-data-rate computation as a countermeasure against fault analysis.
IEEE Trans. Comput. 2008; 57, 1528-39.

[13] A Satoh, T Sugawara, N Homma and T Aoki. High-performance concurrent error detection scheme
for AES hardware. Lect. Notes Comput. Sci. 2008; 5154, 100-12.

[14] M Mozaffari-Kermani, R Azarderakhsh, CY Lee and S Bayat-Sarmadi. Reliable concurrent error
detection architectures for extended euclidean-based division over GF(2m). IEEE Trans. Very Large
Scale Integrat. Syst. 2014; 22, 995-1003.

[15] I Hussain and MA Gondal. An algorithm to generating inverse S-box for Rijndael Encryption
standard. 3D Res. 2014; 5, 1-5.

