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Abstract  

In this paper, an efficient AES (Advanced Encryption Standard) has been designed so that security 
levels can be increased which is caused due to faults and errors. The AES algorithm includes mainly 4 
transformations, which are Sub-byte, Shift row, Mix column, Add round key. The security of Sbox has 
been increased by using even parity, which is used to detect faults rather than correction. A FIFO (First-In 
First-Out) is also considered to store the parity bits of Sbox. The expected parity bit of the output is 
predicted initially with the help of look up table (LUT) and compared with output parity bit. By this we 
can improve the fault coverage of Sbox. Since the Sbox parity architecture involves more MUX and 
XOR, their area is reduced by using the Binary Decision Diagram (BDD) approach and a pass transistor 
implementation of MUX which reduces the area drastically. Verilog HDL language is used to model the 
architecture and verification was done on Modelsim. Design, synthesized using a Cadence Register 
Transfer Level (RTL) complier tool. The synthesized result shows that there is an area overhead of 8 % 
and high fault coverage of 99.23 %. 

Keywords: AES, DES, shift row, mix column, FIFO 
 
 
Introduction 

As the development of computer networks and communication systems are growing faster, a great 
mass of information is being exchanged in communication networks. Security of data is a main concern 
and plays a very important role in data transmission. NIST (National Institute of Standard and 
Technology) agreed to adopt the block based cipher system, Data Encryption Standard (DES) in 1970. It 
solved many security issues, but the security strength of the encryption was weak and it failed for many 
attacks. Thus, NIST announced a better DES algorithm called Triple DES (3DES). This 3DES uses the 
same algorithm as DES but the security level was increased in the 3DES as compared to DES. There were 
2 major disadvantages in the 3DES algorithm. First, it requires 3 times the execution time of DES. 
Second, DES and 3DES uses only 64 bit length block data. So the safety of the cipher system was not 
satisfactory. NIST asked for a new generation cipher, called the Advanced Encryption Standard (AES) in 
1997 [1]. 

NIST choose the Rijndael algorithm as the final AES in 2001. This AES algorithm can resist any 
kind of attacks. Nowadays this algorithm has become the main source for the security of data. Authors 
proposed a module for key generation which will be generated on the fly [2]. AES algorithm can resist 
password attacks of any kind [3]. Sklavos and Koufopavlou [4] proposed an idea for area reduction; they 
performed encryption and decryption with single core, which differs from the conventional methods. 
Satoh [5] Authors substituted all the sixteen blocks using sbox during subbyte transformation which has 
increased the speed but the area got increased. 
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Related work  

Kermani et al. [6] addressed the faults that maliciously occur in the hardware implementations of 
the AES which may cause erroneous output. They proposed to divide the composite field S-box and 
inverse S-box into blocks and the predicted parities of these blocks are obtained. Through exhaustive 
searches among all available composite fields, they found the optimum solutions for the least overhead 
parity-based fault detection structure and through error injection simulations for one S-box (respectively 
inverse S-box), they proved that the total error coverage of almost 100 % for 16 S-boxes can be 
achieved.BDD is an alternate method to represent the Boolean functions with nodes as input variables 
with two decision tree. Beg et al.  [7] used ‘0’ network and ‘1’ network. Each node selection in a MUX 
with the select lines as inputs. Yen at al. [8] proposed multiple stuck-at-fault detection for mix column, 
sub-byte but the area overhead of Sbox is very high with low fault coverage. Many authors proposed the 
fault detection of Sbox which is a part of the sub-byte transformation. Ocheretnij et al. [9] proposed parity 
prediction of Sbox to detect single struck-at-faults with high fault coverage and optimum area overhead. 
Bertoni et al. [10] says that the fault that occurs in the inverter can be detected by using Self-checking 
invertor. Natale et al. [11] proposed Sbox with ROM implementation by using NAND gates. The area 
overhead of this methodology is low with low fault coverage. 
 
 
Table 1 Relationship between rounds and key length. 
 

Type of AES Key length (Nk) Group size Round number (Nr) 

AES-128 4 4 10 

AES-192 6 4 12 

AES-256 8 4 14 
 
 

 
 
Figure 1 Block diagram of AES algorithm. 
 
 

Maistri and Leveugle [12] proposed Differential Fault Analysis (DFA) and Double-Data-Rate 
(DDR) are the most powerful techniques to attack cryptosystems. Satoh et al. [13] proposed a concurrent 
error detection scheme for the AES algorithm. Mozaffari-Kermani et al. [14] in another paper presented 3 
parity prediction schemes to make the EEA division algorithm more reliable. They have proved that the 
CED division architecture using dual multiple parity prediction scheme was capable of reaching close to 
100 % error coverage for single and multiple stuck-at faults. Hussain and Gondal [15] proposed an 
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algorithm to generate Inverse Sbox value. This gives low convolution architecture and easily achieves 
high throughput and low latency. 
 
Preliminaries 

 AES Algorithm 
The AES algorithm can be implemented in 3 different ways with key lengths of 128, 256, 192 bits 

as shown in Table 1. Nk represents the key length (number of words in the keys, each word consists of 32 
bit or 4 bytes of data). Round number (Nr) is the number of rounds needed by the AES to complete 
encryption or decryption. It depends on the length and variation of the length of key. As the length of key 
is increased the complexity of the algorithm also increases and so the security. We generally prefer 128 
bits cipher key with block (state), which is always 128 bits. 

The algorithm mainly contains 2 parts encryption and decryption. Encryption takes 2 inputs, cipher 
key and plain text, which are of 128 bits. Cipher keys are of different length 128, 192 and 256 bit. Cipher 
key converts the plain text into the cipher text which is of encrypted data as shown Figure 1. The AES 
algorithm is performed in 4 different steps. These steps are executed in a sequential manner which form 
the rounds. 

 
A. Sub-byte transformation            B. Shift row transformation  
C. Mix column transformation       D. Add round key transformation 

 
State is a 44 array of bytes, which contain the 128 bits of keys and in another state the 128 bits of 

plain text. At the initial stage plain text (state) is added (XORed) with the round key. This process is 
called Add_round_key. The round key is generated by key expansion block. Then the round of AES starts 
with the initial stage sub-byte operation followed by shift row, mix column and add round key. The 
number of rounds depends on the key length. In the final rounds the mix column is removed and the 
process is performed as shown in Figure 2(a), which gives the cipher text output containing 128 bits or 4 
words or 16 bytes. The cipher text obtained from the encryption is transmitted through a channel (in 
communication system) and at the receiver end decryption is used to convert the cipher text to plain text. 
Decryption is just the inverse of encryption as shown in Figure 2(b). The key expansion block in 
decryption is same as that of the encryption. 
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                                                  (a)                                                                 (b)   
 
Figure 2 Various steps involved in AES algorithm. 
 
 
Proposed architecture 

 Sub-byte transformation 
Sub-byte is a nonlinear substitution based on the Sbox matrix as shown in Figure 3. The Sbox 

transformation mainly contains 2 steps. 
1. Multiplicative inverse of each and every byte of the state with the irreducible polynomial	ሺX଼ ൅

Xସ ൅ Xଷ ൅ 1ሻ. 
2. Apply the affine transformation over ܨܩሺ2଼ሻ. 
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S20
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Figure 3 Transformation of state using Sbox. 
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Let I ൌ ሺi଻, i଺, iହ, iସ, iଷ, iଶ, iଵ, i଴ሻ be the input to the Transformation matrix δ and 
S	ൌ ሺs଻, s଺, sହ, sସ, sଷ, sଶ, sଵ, s଴ሻ, then the output of Transformation matrix is; 
 
 

ܵ ൌ ݅଻ ൅ ݅଺ ൅ ݅ଵ 
ܵ ൌ ݅଺ ൅ ݅ଷ ൅ ݅ଵ	ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଷ ൅ ݅଴ 

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ଵ ൅ ݅଴ 
ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ଵ ൅ ݅଴ 

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଶ ൅ ݅଴ 
ܵ ൌ ݅ହ ൅ ݅ସ ൅ ݅ଶ ൅ ݅଴ 

ܵ ൌ ݅଺ ൅ ݅ହ ൅ ݅ସ ൅ ݅ଷ ൅ ݅ଵ ൅ ݅଴ 
ܵ ൌ ݅ଶ ൅ ݅଴ 

 

 
Figure 4 Implementation of Sbox with a combinational circuit. 
 
 

Sbox can be implemented in 2 ways, first by Look Up Table (LUT) and the second by using a 
combinational circuit as shown in Figure 4. For LUT we need to store the values in the memory which 
has high access delay as compared to the combinational circuit and it has lower delay and higher speed of 
operation [6]. Each byte ‘I’ is transformed to ‘S’ using Eqs. (1) and (2); 
 
ܫ ∈  ሺ2଼ሻ                  (1)ܨܩ
 
ܵ ൌ ܵ௛ݔ ൅ ௟ܵ                                       (2) 
 
which belongs to ܨܩሺ2଼ሻ, where; 
ܺଶ ൅ ܺ ൅ ߣ ൌ 0                                  (3) 
 
Now the multiplicative inverse starts which gives the output; 
 
ܱ ൌ ܱ௛ݔ ൅ ௟ܱ ൌ ܵିଵ                                      (4) 
 
where ܱ௛ ൌ ܵ௛ߠ and ௟ܱ ൌ ሺܵ௛ ൅ ௟ܵሻߠ and 
 
ߠ ൌ ܵ௛

ଶ ൅ ܵ௛ ௟ܵ ൅ ௟ܵ
ଶ                                    (5) 

 
where ߣ ൌ ሺ1100ሻଶ, ܵ௛, ௟ܵ are higher and lower bits of S (8 bit) matrix. 
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Figure 5 Multiplication in ܨܩ൫2ଶ

మ
൯. 

 
 

Where ߮ ൌ ሺ01ሻଶ in Figure 5. Now the multiplication transformation takes place followed by the 
affine transformation [6]. Each multiplication will take 4 addition (XOR gates) and 3 finite field 
multiplication. z1, z2, z3, z4 are the outputs of the multiplication with λ in ܨܩ൫2ଶ

మ
൯ and they are given as 

input to the XOR gate as shown in Figure 4. Figures 5 - 7 shows the combinational equivalent circuit to 
Sbox implementation in Figure 4. From these figures the Sbox operation becomes easy to implement and 
has very little delay when compared with the look up table approach [6]. 
 
 

 
Figure 6 Multiplication of λ in ܨܩ൫2ଶ

మ
൯. 

 
Figure 7 Squaring in ܨܩ൫2ଶ

మ
൯. 

 
 Shift row transformation 

After sub-byte transformation, shift row follows. It shifts rows to the left by their row number, 
which mean the zeroth row will be shifted zeroth times and second row will be shifted by 2 times to the 
left as shown in the Figure 8. Parity analysis can also be done to the shift row, mix column and add round 
key transformation, but the sub-byte transformation which is nonlinear in nature can affect the whole state 
(44 array). 
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Figure 8 Transformation of shift row. 
 

             Figure 9 Transformation of Mix column. 
 

 
Mix column 
Mix column operates on the 4 byte or word at a time. Multiplication takes place with each 

column and is entirely based on the polynomial coefficient	ܨܩሺ2଼ሻ. This is shown in Figure 9. 
 
 Add round key 

For each round a 128 bit key is generated from the key expansion process, this key is then given to 
add round key which is XOR of each column of state with each column of key as shown in Figure 10. 

 
 

 
Figure 10 Transformation of add round key. 

 

SBOX

Comparator

Parity from LUT

Parity

 
Figure 11 Even Parity implementation. 

 
 
 Fault detection architecture 
  We concentrate more on the Sbox, as it is non-linear and it will affect all the rounds in AES, if there 
are any errors or faults in the Sbox (state). Checking these errors is very important as it provides good 
security. This fault checking is done by parity bit. Prediction of parity bit is easy and provides low cost 
and high security. The prediction of parity is very easy with respect to the shift row, mix column and add 
round key. If any fault occurs in these steps, then the fault propagation is not that affective as it is in the 
Sbox. 

Sbox is implemented either by combinational circuit or by the 2569 bits memory with address 
decoding technique. A solution was provided to generate the outgoing parity bit in [7] and it is shown in 
the Figure 11. 

The width of memory is 9 bits which contains each byte of Sbox along with the parity bit. The 
parity here was considered as even parity. To increase the dependability, a new architecture is proposed 
as shown in Figure 12. In this paper we mainly focus on the Sbox, as it is non-linear in nature, which has 
dependency on fault propagation. This was described in [9]. If the fault occurs in the early stage of the 
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rounds then the fault propagation is very high up to 70 to 80 bits, which is quite very high, but if the fault 
occurs in the later stage (say 8th or 9th rounds) then the fault propagation is low and may be zero some 
times. So the detection of a fault at the early stages (round) makes an efficient AES algorithm. 

Figure 12 shows the architecture for single stuck at fault occurrence. We consider the even parity in 
the architecture. It mainly contains the combinational circuit Sbox module and LUT and some equalizers 
(comparators). In the Sbox transformation, each byte of state is transformed to another state. Each byte 
coming into the combinational circuit as shown in Figure 12, the even parity bit of each byte is predicted 
with the XOR gate and output parity bit is predicted by taking from the output look up table of Sbox. 
After execution of Sbox the parity of this executed byte is found through the XOR gate and the 
corresponding input parity prediction is taken from the input LUT. These values are compared to each 
with an equalizer. If they are all equal then we can conclude that there is no error or fault in the AES 
Sbox. 
 

BDD based MUX design 
Since the parity implementation of the SBox requires more number of XOR gates and MUX, this 

requires a huge area for implementation and it increase the area by 8 % and thereby its power and its 
speed. So an alternate implementation is followed in this Sbox building i.e. Binary Decision Diagram 
(BDD) using the Shannon’s decomposition theorem as shown in Eq. (6) is applied for the construction of 
the MUX and XOR which reduces the area exponentially. 

 
 

SBOX

FIFO

Input LUT

Output LUT

FIFO

Comparator

Comparator

Parity

Parity

 
Figure 12 Efficient Parity implementation of Sbox. 
 
 

BDD is an alternative method to represent the Boolean functions with nodes as input variables with 
2 decision trees as ‘0’ network and ‘1’ network [7,14]. Each node selection is a MUX with select lines as 
inputs. 
 
F(x1,…...xi,…….xn) = xi f(x1,….1,…..xn) + xi’ f(x1,…..0,……xn)                  (6)  
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                   (a)                                                    (b)                                                  (c) 
 

Figure 13 (a) Truth Table of an XOR gate, (b) BDD representation of XOR gate and (c) Pass Transistor 
implementation of MUX. 
 
 

Figure 13(a) represents the XOR gate implementation and Figure 13(b) XOR gate using the BDD 
representation. Variables ‘a’ and ‘b’ are input and Edge ‘T’ represents the input variable representing the 
‘1’ value and ‘E’ represent the ‘0’ value of the node. The node can be implemented with a MUX as 
shown in Figure 13(c) and thereby any Boolean function could be represented using only MUX. This 
drastically reduces the transistor count against the CMOS implementation because the 2:1 MUX 
implementation requires 2 AND gates and 1 OR gate with 1 INV which counts to 20 transistors compared 
to only 4 transistors in pass transistors implementation. The only problem with this pass transistor logic is 
the logic degradation which could also be resolved by using a buffer at the end of the MUX which would 
consume 2 extra transistors. So it is still more efficient in terms of area and power consumption. 
 
Experimental results 

In this section area and fault coverage calculation has been done using 0.35 and 0.18 m. The 
simulation has been performed in Modelsim and Cadence Nclaunch. The synthesis has been performed in 
the Cadence Register Transfer Level (RTL) compiler. 
 
 
Table 2 ASIC Synthesis results showing area and power of Sbox FIFO. 
 

Sbox with FIFO (m) Area (m2) Power (W) 

0.18 26202 86240 
0.35 37562 11776 

 
 

Table 2 shows the area and power required by Sbox with FIFO in both 0.18 and 0.35 m. These 
values are compared with the architectures proposed in the [9-11]. This architecture has been synthesized 
using the same technology library. In all the above mentioned architectures Sbox have been implemented 
as a combinational logic. 

Table 3 shows the comparison of fault coverage and area overhead. The solution proposed in [9] 
allows an area overhead of 27.62 % which is optimum and fault coverage of 91.95 %. The solution 
proposed in [10] has an optimum fault coverage of 93.43 % with a high area overhead. In [11] the fault 
coverage is very high with a lower overhead. Our proposed architecture has an area overhead of 8 % and 
a fault coverage of 99.23 % compared with [11]. 
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In this experiment we considered only a single stuck-at-fault and fault coverage has been measured 
using Cadence-Nclaunch. By introducing the single error (fault) in Sbox we tried to determine the fault 
coverage by providing effective test vectors. 
 
 
Table 3 Comparison with proposed architecture. 
 

 Area (μm2) Area overhead 
Fault coverage  

(Area optimization) 
V Ocherentnij [9] 29432 27.62 % 91.95 % 
G Bertoni [10] 23614 59.06 % 93.43 % 
G Di Natale [11] 34780 8 % 99.20 % 
Proposed Architecture (350 nm) 37562 8 % (Excess) 99.23 % 
Proposed Architecture with BDD 10390 70 % (Less with [11]) 99.23 % 
 
 
Conclusions 

In this paper, we have successfully designed an efficient AES algorithm with parity of Sbox. We 
have used Verilog HDL language to describe the model and verification was done on Modelsim and 
Cadence Nclaunch. The area and power were calculated and tabulated in the results using Cadence RTL 
compiler. There is an area overhead of 8 % due to the usage of FIFO, but the security of Sbox is improved 
with a fault coverage of 99.23 % with a slight increase in power, which is negligible. 
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