On Classical Quasi-Primary Radical of Submodules and Classical Quasi-Primary Radical Formula of Submodules

Pairote YIARAYONG* and Phakakorn PANPHO
Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand

(*Corresponding author’s e-mail: pairote0027@hotmail.com)
Received: 15 October 2014, Revised: 3 March 2015, Accepted: 5 April 2015

Abstract

In this paper we characterize the classical quasi-primary radical of submodules and classical quasiprimary radical formula of modules over commutative rings with identity. These are extended from radical, radical primary, and radical formula of submodules, respectively. Finally, we obtain necessary and sufficient conditions of a submodule in order to be a top classical quasi-primary radical formula of submodules.

Keywords: Classical quasi-primary submodule, classical quasi-primary radical of submodule, classical quasi-primary radical formula of submodule

Introduction

Throughout this paper all rings are commutative with identity and all modules are unitary. We recall that a proper ideal P of R is called a primary ideal if $a b \in P$, where $a, b \in R$, implies that either $a \in P$ or $b^{n} \in P$, for some positive integer n [1]. The notion of primary ideal was generalized by Fuchs [1] through defining an ideal P of a ring R to be it quasi primary if its radical is a prime ideal, i.e., if $a b \in P$, where $a, b \in R$, then either $a^{n} \in P$ or $b^{n} \in P$, for some positive integer n (see also [2,3]). A subset N of the R-module M is a submodule, expressed $N \leq M$, if it is a subgroup that is closed under the R-action: For all $r \in R$ and $n \in N$, we have $r n \in N$. We say that a submodule N of M is proper if $N \neq M$. A proper submodule N of an R-module M is a primary submodule of $M \quad$ if for $\quad m \in M \quad$ and $\quad r \in R \quad$ such \quad that $\quad r m \in N$, then $\quad m \in N \quad$ or $r \in \sqrt{(N: M)}=\left\{a \in R \mid a^{n} M \subseteq N\right.$, for some positive integer $\left.n\right\}$. An R-module M is a primary module if every proper submodule N of M is a primary submodule of M (see, for example, [4-8]). A classical primary submodule in M as a proper submodule N of M such that if $a b K \subseteq N$, where $a, b \in R$ and $K \leq M$, then either $a K \subseteq N$ or $b^{n} K \subseteq N$ for some positive integer n. Clearly, in case $M=R$, where R is any commutative ring, classical primary submodules coincide with primary ideals [9-11]. A classical quasi-primary submodule in M as a proper submodule N of M such that if $a b K \subseteq N$, where $a, b \in R$ and $K \leq M$, then either $a^{n} K \subseteq N$ or $b^{n} K \subseteq N$ for some positive integer n. The idea of decomposition of submodules into classical primary submodules was introduced by Baziar and Behboodi in [9]. The primary radical of N in M, denoted by $\operatorname{prad}_{M}(N)$, is defined to
be the intersection of all primary submodules containing N. Should there be a primary submodule of M containing N, then we put $\operatorname{prad}_{M}(N)=M$. Radicals have been investigated in a number of papers, for example [1,2,12-14]. A classical quasi-primary radical of N in M, denoted by $\operatorname{cprad}_{M}(N)$, is defined to be the intersection of all classical quasi-primary submodules containing N. Should there be a classical quasi-primary submodule of M containing N, then we put $\operatorname{cprad}_{M}(N)=M$.

In this note, we shall need the notion of the envelope of a submodule introduced by McCasland and Moore [15]. For a submodule N of an R-module M, the envelope of N in M, denoted by $E_{M}(N)$, is defined to be the subset $\left\{r m: r \in R\right.$ and $m \in M$ such that $r^{k} m \in N$ for some positive integer $n\}$ of M [15-17]. Note that, in general, $E_{M}(N)$ is not an R-module. With the help of envelopes, the notion of the classical primary radical formula is defined as follows: A submodule N of an R-module M is said to satisfy the classical quasi-radical formula in M, if $\left\langle E_{M}(N)\right\rangle=\operatorname{cprad}_{M}(N)$. In this paper we introduce the notion of a classical quasi-primary radical of submodules and classical quasi-primary radical formula of modules over a commutative ring with identity. Finally, we obtain necessary and sufficient conditions of a submodule in order to be a top classical quasi-primary radical formula of submodules.

Basic results

Let $R=\prod_{i=1}^{n} R_{i}$ where each R_{i} is a commutative ring with identity. Then an ideal $I=\prod_{i=1}^{n} I_{i}$ of P is prime if and only if I_{i} is equal to the corresponding ring R_{i} and the other is prime. Moreover, any R-module M can be uniquely decomposed into a direct product of modules, i.e. $M=\prod_{i=1}^{n} M_{i}$, where $M_{i}=(0,0,0, \ldots, 0,1,0, \ldots 0) M$ is an R_{i}-module with action;
$\left(r_{1}, r_{2}, \ldots, r_{n}\right)\left(m_{1}, m_{2}, \ldots, m_{n}\right)=\left(r_{1} m_{1}, r_{2} m_{2}, \ldots, r_{n} m_{n}\right)$,
where $r_{i} \in R_{i}$ and $m_{i} \in M_{i}[7]$.
Lemma 2.1 [17] Let $N=N_{1} \times N_{2}$ be a submodule of M. Then;
$\left\langle E_{M}(N)\right\rangle=\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times\left\langle E_{M_{2}}\left(N_{2}\right)\right\rangle$.
Proof See [17].

Corollary 2.2 [17] Let $N=\prod_{i=1}^{n} N_{i}$ be a submodule of M. Then;

$$
\begin{equation*}
\left\langle E_{M}(N)\right\rangle=\prod_{i=1}^{n}\left\langle E_{M_{i}}\left(N_{i}\right)\right\rangle \tag{3}
\end{equation*}
$$

Proof See [17].
Lemma 2.3 [16] If N is a weakly prime submodule, then $\left\langle E_{M}(N)\right\rangle=N$.
Proof. See [17].
Lemma 2.4 [16] Let N be a semiprime submodule of an R-module M. Then;

$$
\begin{equation*}
\left\langle E_{M}(N)\right\rangle=N \tag{5}
\end{equation*}
$$

Proof See [16].

Some basic properties of the classical quasi-primary submodules

The results of the following lemmas seem to be at the heart of the theory of classical quasi-primary submodules; these facts will be used so frequently that normally we shall make no reference to this lemma.

Definition 3.1 A proper submodule N of an R-module M is said to be a classical quasi-primary submodule of M if $a b K \subseteq N$, where $a, b \in R$ and $K \leq M$, then either $a^{n} K \subseteq N$ or $b^{n} K \subseteq N$ for some positive integer n.

Lemma 3.2 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. A submodule $N_{1} \times M_{2}$ is a classical quasi-primary submodule of M if and only if N_{1} is a classical quasi-primary submodule of M_{1}.
Proof Suppose that $N_{1} \times M_{2}$ is a classical quasi-primary submodule of R-module M. We will show that N_{1} is a classical quasi-primary submodule of M_{1}. Clearly, N_{1} is a proper submodule of R_{1} module M_{1}. To see the classical quasi-primary property of N_{1}, let K be a submodule of R_{1}-module M_{1} and $a, b \in R_{1}$ such that $a b K \subseteq N_{1}$. Then;
$(a, 0)(b, 0)(K \times\{0\})=a b K \times\{0\} \subseteq N_{1} \times M_{2}$.

Since $N_{1} \times M_{2}$ is a classical quasi-primary submodule of R-module M, it follows that;
$\left(a^{n} K \times\{0\}\right)=(a, 0)^{n}(K \times\{0\}) \subseteq N_{1} \times M_{2}$
or

$$
\begin{equation*}
\left(b^{n} K \times\{0\}\right)=(b, 0)^{n}(K \times\{0\}) \subseteq N_{1} \times M_{2} \tag{8}
\end{equation*}
$$

for some positive integer n, that is $a^{n} K \subseteq N_{1}$ or $b^{n} K \subseteq N_{1}$, for some positive integer n. Therefore N_{1} is a classical quasi-primary submodule of R_{1}-module M_{1}. Conversely, suppose that N_{1} is a classical quasi-primary submodule of R_{1}-module M_{1}. We will show that $N_{1} \times M_{2}$ is a classical quasiprimary submodule of R-module M. Clearly, $N_{1} \times M_{2}$ is a proper submodule of R-module M. To see the classical quasi-primary property of $N_{1} \times M_{2}$, let $K \times L$ be a submodule of R-module M and $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in R$ such that;
$a_{1} b_{1} K \times a_{2} b_{2} L=\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)(K \times L) \subseteq N_{1} \times M_{2}$.
Since N_{1} is a classical quasi-primary submodule of R_{1}-module M_{1} and $a_{1} b_{1} K \subseteq N_{1}$, we have $a_{1}^{n} K \subseteq N_{1}$ or $b_{l}^{n} K \subseteq N_{l}$, for some positive integer n. Therefore;
$\left(a_{1}, a_{2}\right)^{n}(K \times L)=a_{1}^{n} K \times a_{2}^{n} L \subseteq N_{1} \times M_{2}$
or
$\left(b_{1}, b_{2}\right)^{n}(K \times L)=b_{1}^{n} K \times b_{2}^{n} L \subseteq N_{1} \times M_{2}$,
for some positive integer n, and hence $N_{1} \times M_{2}$ is a classical quasi-primary submodule of R-module M.

Corollary 3.2 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. A submodule $M_{1} \times N_{2}$ is a classical quasi-primary submodule of R-module M if and only if N_{2} is a classical quasi-primary submodule of R_{2}-module M_{2}.
Proof This follows from Lemma 3.2.
Corollary 3.3 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module. A submodule;
$M_{1} \times M_{2} \times \ldots \times M_{j-1} \times N_{j} \times M_{j+1} \times \ldots \times M_{n}$
is a classical quasi-primary submodule of R-module M if and only if N_{j} is a classical quasi-primary submodule of R_{j}-module M_{j}.
Proof This follows from Lemma 3.2 and Corollary 3.3.
Lemma 3.5 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If $N_{1} \times\{0\}$ is a classical quasi-primary submodule of M, then N_{1} is a classical quasi-primary submodule of M_{1}.

Proof Suppose that $N_{1} \times\{0\}$ is a classical quasi-primary submodule of R-module M. We will show that N_{1} is a classical quasi-primary submodule of M_{1}. Clearly, N_{1} is a proper submodule of R_{1} module M_{1}. To see the classical quasi-primary property of N_{1}, let K be a submodule of R_{1}-module M_{1} and $a, b \in R_{1}$ such that $a b K \subseteq N_{1}$. Then;
$(a, 0)(b, 0)(K \times\{0\})=a b K \times\{0\} \subseteq N_{1} \times\{0\}$.
Since $N_{1} \times M_{2}$ is a classical quasi-primary submodule of R-module M, it follows that;
$\left(a^{n} K \times\{0\}\right)=(a, 0)^{n}(K \times\{0\}) \subseteq N_{1} \times\{0\}$
or
$\left(b^{n} K \times\{0\}\right)=(b, 0)^{n}(K \times\{0\}) \subseteq N_{1} \times\{0\}$,
for some positive integer n, that is $a^{n} K \subseteq N_{1}$ or $b^{n} K \subseteq N_{1}$, for some positive integer n. Therefore N_{1} is a classical quasi-primary submodule of R_{1}-module M_{1}.

Corollary 3.6 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If $\{0\} \times N_{2}$ is a classical quasiprimary submodule of R-module M, then N_{2} is a classical quasi-primary submodule of R_{2}-module M_{2}.
Proof This follows from Lemma 3.5.
Corollary 3.7 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module. If $\{0\} \times\{0\} \times \ldots \times N_{j} \times \ldots \times\{0\}$ is a classical quasi-primary submodule of R-module M, then N_{j} is a classical quasi-primary submodule of R_{j}-module M_{j}.
Proof This follows from Lemma 3.5 and Corollary 3.6.
Some basic properties of the classical quasi-primary radical formula of submodules
Our starting point is the following lemma:
Lemma 4.1 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If W is a classical quasi-primary submodule of R-module M, then $P=M_{1}$ or P is a classical quasi-primary submodule of R_{1} module M_{1}, where $P=\left\{x \in M_{1}:(x, 0) \in W\right\}$.
Proof Suppose that $P \neq M_{1}$. We will show that P is a classical quasi-primary submodule of R_{1} module M_{1}. It is clear that, P is a proper submodule of R_{1}-module M_{1}. To see the classical quasiprimary property of P, let $a, b \in R_{1}$ and K be submodule of M_{1} such that $a b K \subseteq P$. Let $k \in K$.

Then $a b k \in P$ so that $(a, 0)(b, 0)(k, 0)=(a b k, 0) \in W$. Thus $(a, 0)(b, 0)(K \times\{0\}) \subseteq W$. Since W is a classical quasi-primary submodule of M, we have $(a, 0)^{n}(K \times\{0\}) \subseteq W$ or;

$$
\begin{equation*}
(b, 0)^{n}(K \times\{0\}) \subseteq W \tag{16}
\end{equation*}
$$

for some positive integer n. Thus $\left(a^{n} k, 0\right)=(a, 0)^{n}(k, 0) \in W$ or $\left(b^{n} k, 0\right)=(b, 0)^{n}(k, 0) \in W$. It follows that $a^{n} k \in P$ or $b^{n} k \in P$. Therefore $a^{n} K \in P$ or $b^{n} K \in P$ and hence P is a classical quasi-primary submodule of M_{1}.

Corollary 4.2 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If W is a classical quasi-primary submodule of R-module M, then $P=M_{2}$ or P is a classical quasi-primary submodule of R_{2} module M_{2}, where $P=\left\{x \in M_{2}:(0, x) \in W\right\}$.
Proof This follows from Lemma 4.1.
Corollary 4.3 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module and let W be a classical quasi-primary submodule of R-module M. If $P=\left\{x \in M_{j}:(0,0, \ldots, x, 0 \ldots, 0) \in W\right\}$, then $P=M_{j}$ or P is a classical quasi-primary submodule of R_{j}-module M_{j}.
Proof This follows from Lemma 4.1 and Corollary 4.2.
Definition 4.4 A classical quasi-primary radical of N in M, denoted by $\operatorname{cprad}_{M}(N)$, is defined to be the intersection of all classical quasi-primary submodules containing N. Should there be a classical quasi-primary submodule of M containing N, then we put $\operatorname{cprad}_{M}(N)=M$.

Lemma 4.5 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module and let N be a submodule of R_{1}-module M_{1}. Then $m \in \operatorname{cprad}_{M_{I}}(N)$ if and only if $(m, 0) \in \operatorname{cprad}_{M}(N \times\{0\})$.
Proof Suppose that $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. Let N be a submodule of R_{1} module M_{1} and let $m \in \operatorname{cprad}_{M_{I}}(N)$. If there is no classical quasi-primary submodule containing $N \times\{0\}$, then $\operatorname{cprad}_{M}(N \times\{0\})=M$. Therefore $(m, 0) \in M=\operatorname{cprad}_{M}(N \times\{0\})$. There exists a classical quasi-primary submodules containing $N \times\{0\}$, then there exists a classical quasiprimary submodule W, with $N \times\{0\} \subseteq W$. By Lemma 4.1 and $P=\left\{x \in M_{1}:(x, 0) \in W\right\}$, we have $P=M_{1}$ or P is a classical quasi-primary submodule of R-module M_{1}.

Case 1: $P=M_{1}$. Since $m \in \operatorname{cprad}_{M_{I}}(N)$ we have $m \in P$. Then $(m, 0) \in W$. Therefore if W is a classical quasi-primary submodule containing $N \times\{0\}$, then $(m, 0) \in W$.

Case 2: $P \neq M_{1}$. Since $P \neq M_{1}$, we have P is a classical quasi-primary submodule of $R-$ module M_{1}. Let $x \in N$. Then $(x, 0) \in N \times\{0\}$ so that $x \in P$. It follows that $N \subseteq P$. We have

$$
\begin{align*}
\operatorname{cprad}_{M_{I}}(N) & \subseteq \operatorname{cprad}_{M_{l}}(P) \\
& =P \tag{17}
\end{align*}
$$

so that $m \in P$. Therefore if W is a classical quasi-primary submodule containing $N \times\{0\}$, then $(m, 0) \in W$ and hence $(m, 0) \in M=\operatorname{cprad}_{M}(N \times\{0\})$.

Corollary 4.6 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module and let N be a submodule of R_{2} module M_{2}. Then $m \in \operatorname{cprad}_{M_{2}}(N)$ if and only if $(0, m) \in \operatorname{cprad}_{M}(\{0\} \times N)$.
Proof This follows from Lemma 4.5.
Corollary 4.7 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module and let N be a submodule of R_{j}-module M_{j}. Then $m \in \operatorname{cprad}_{M_{j}}(N)$ if and only if;
$(0,0, \ldots, m, 0, \ldots, 0) \in \operatorname{cprad}_{M}(\{0\} \times\{0\} \times \ldots \times N \times\{0\} \times \ldots \times\{0\})$.
Proof This follows from Lemma 4.5 and Corollary 4.6.
Lemma 4.8 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If N_{i} is a submodule of R_{i}-module M_{i}, then $\operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(N_{2}\right) \subseteq \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right)$.
Proof Suppose that $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. Let N_{i} be a submodule of R_{i} module M_{i}. We will show that $\operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(N_{2}\right) \subseteq \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right)$. Let;

$$
\begin{equation*}
(x, y) \in \operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(N_{2}\right) . \tag{19}
\end{equation*}
$$

Then $x \in \operatorname{cprad}_{M_{1}}\left(N_{1}\right)$ and $y \in \operatorname{cprad}_{M_{2}}\left(N_{1}\right)$. By Lemma 4.4 and Lemma 4.5, we have;

$$
\begin{equation*}
(x, 0) \in \operatorname{cprad}_{M}\left(N_{1} \times\{0\}\right) \subseteq \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right) \tag{20}
\end{equation*}
$$

and
$(0, y) \in \operatorname{cprad}_{M}\left(\{0\} \times N_{2}\right) \subseteq \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right)$.
Then;
$(x, y)=(x, 0)+(0, y) \in \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right)$
and hence $\operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(N_{2}\right) \subseteq \operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right)$.
Corollary 4.9 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module. If N_{i} be a submodule of R_{i}-module M_{i}, then $\prod_{i=1}^{n} \operatorname{cprad}_{M_{i}}\left(N_{i}\right) \subseteq \operatorname{cprad}_{M}\left(\prod_{i=1}^{n} N_{i}\right)$.
Proof This follows from Lemma 4.8.
Theorem 4.10 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If N is a submodule of R_{1}-module M_{1}, then $\operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right)=\operatorname{cprad}_{M}\left(N_{1} \times M_{2}\right)$.

Proof Suppose that $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. Let N be a submodule of R_{1} module M_{1}. By Lemma 4.8, we have $\operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right) \subseteq \operatorname{cprad}_{M}\left(N \times M_{2}\right)$. We will show that;
$\operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right) \supseteq \operatorname{cprad}_{M}\left(N \times M_{2}\right)$.
If there is no classical quasi-primary submodule containing N, then $\operatorname{cprad}_{M_{1}}(N)=M_{1}$. Then;
$\operatorname{cprad}_{M}\left(N \times M_{2}\right) \subseteq \operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right)$.
If there are classical quasi-primary submodules containing N, then there exists W a classical quasiprimary submodule of M_{1} containing N. Then $W \times M_{2}$ is a classical quasi-primary submodule of M containing $N \times M_{2}$. Let P be a classical quasi-primary submodule of M containing $N \times M_{2}$. Then;
$N \times M_{2} \subseteq \operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times M_{2}=\operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right)$.
Therefore;
$\operatorname{cprad}_{M}\left(N_{1} \times N_{2}\right) \subseteq \operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right)$
and hence $\operatorname{cprad}_{M_{1}}(N) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right)=\operatorname{cprad}_{M}\left(N_{1} \times M_{2}\right)$.

Corollary 4.11 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If N is a submodule of R_{2}-module M_{2}, then;
$\operatorname{cprad}_{M}\left(M_{2} \times N\right)=\operatorname{cprad}_{M_{1}}\left(M_{2}\right) \times \operatorname{cprad}_{M_{2}}(N)$.
Proof This follows from Lemma 4.10.

Corollary 4.12 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module. If N_{i} be a submodule of R_{i}-module M_{i}, then;

$$
\begin{equation*}
\prod_{i=1}^{n} \operatorname{cprad}_{M_{i}}\left(N_{i}\right)=\operatorname{cprad}_{M}\left(\prod_{i=1}^{n} N_{i}\right) \tag{29}
\end{equation*}
$$

Proof This follows from Lemma 4.10 and Corollary 4.11.
Theorem 4.13 Let $M=M_{1} \times M_{2}$, where M_{i} is an R_{i}-module. If N_{1} is a classical quasi-primary submodule of M_{1}, then N_{1} is to satisfy the classical quasi-primary radical formula in M_{1} if and only if $N_{1} \times M_{2}$ is to satisfy the classical quasi-primary radical formula in M.
Proof Suppose that N_{1} is a classical quasi-primary submodule of M_{1} and N_{1} is to satisfy the classical quasi-primary radical formula in M_{1}. We will show that $N_{1} \times M_{2}$ is to satisfy the classical quasiprimary radical formula in M. Since N_{1} is a classical primary submodule of M_{1}, it follows that;

$$
\begin{align*}
\operatorname{cprad}_{M}\left(N_{1} \times M_{2}\right) & =\operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right) \\
& =\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times M_{2} \\
& =\left\langle E_{M}\left(N_{1} \times M_{2}\right)\right\rangle \tag{30}
\end{align*}
$$

Therefore $N_{1} \times M_{2}$ to satisfy the classical quasi-primary radical formula in M. Conversely, suppose that N_{1} is a classical quasi-primary submodule of M_{1} and $N_{1} \times M_{2}$ to satisfy the classical quasiprimary radical formula in M. We will show that N_{1} is to satisfy the classical quasi-primary radical formula in M_{1}. Since $N_{1} \times M_{2}$ is a classical quasi-primary prime submodule of M, it follows that;

$$
\begin{align*}
\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle \times M_{2} & =\left\langle E_{M}\left(N_{1} \times M_{2}\right)\right\rangle \\
& =\operatorname{cprad}_{M_{1}}\left(N_{1}\right) \times \operatorname{cprad}_{M_{2}}\left(M_{2}\right) \tag{31}
\end{align*}
$$

Then $\operatorname{cprad}_{M_{1}}\left(N_{1}\right)=\left\langle E_{M_{1}}\left(N_{1}\right)\right\rangle$ and hence N_{1} is to satisfy the classical quasi-primary radical formula in M_{1}.
Theorem 4.14 Let $M=\prod_{i=1}^{n} M_{i}$, where M_{i} is an R_{i}-module. If N_{j} is a classical quasi-primary submodule of M_{j}, then N_{j} satisfies the classical quasi-primary radical formula in M_{j} if and only if $M_{1} \times M_{2} \times \ldots \times M_{j-1} \times N_{j} \times M_{j+1} \times \ldots \times M_{n}$ to satisfy the classical quasi-primary radical formula in M. Proof This follows from Theorem 4.13.

Conclusions

Many new classes of classical quasi-primary radical formula of modules over commutative rings with identity have been discovered recently. All these have attracted researchers of the field to investigate these newly discovered classes in detail. This article investigates the classical quasi-primary submodule, classical quasi-primary radical of submodule, classical quasi-primary radical formula of submodule of modules over commutative rings with identity. Some characterizations of classical quasi-primary radical of submodule and classical quasi-primary radical formula of submodule are obtained. Finally, we obtain necessary and sufficient conditions of a submodule in order to be a classical quasi-primary radical formula of submodules.

Acknowledgements

The authors gratefully acknowledge helpful suggestions of the referees.

References

[1] L Fuchs. On quasi-primary ideals. Acta Univ. Szeged. Sect. Sci. Math. 1974; 11, 174-83.
[2] L Fuchs and E Mosteig. Ideal theory in Prufer domains. J. Algebra 2002; 252, 411-30.
[3] E Noether. Ideal theorie in Ringbereichen (in German). Math. Ann. 1992; 83, 24-66.
[4] LJM Abulebda. The primary radical of a submodule. Adv. Pure Math. 2012; 2, 344-8.
[5] M Alkan and B Sarac. On primary decompositions and radicals of submodules. Proc. Jangjeon Math. Soc. 2007; 10, 71-81.
[6] S Hedayat and R Nekooei. Primary decomposition of submodules of a finitely generated module over a PID. Houston J. Math. 2006; 32, 369-77.
[7] PF Smith. Primary modules over commutative rings. Glasgow Math. J. 2001; 43, 103-11.
[8] Y Tlras and A Harmancl. On prime submodules and primary decomposition. Czech. Math. J. 2000; 50, 83-90.
[9] M Baziar and M Behboodi. Classical primary submodules and decomposition theory of Modules. J. Algebra Appl. 2009; 8, 351-62.
[10] SE Atani and AY Darani. On quasi-primary submodules. Chiang Mai J. Sci. 2006; 33, 249-54.
[11] M Behboodi, R Jahani-Nezhad and MH Naderi. Classical quasi-primary submodules. Bull. Iran. Math. Soc. 2011; 37, 51-71.
[12] J Dauns. Prime modules. J. Reine Angew. Math. 1978; 298, 156-81.
[13] J Jenkins and PF Smith. On the prime radical of a module over a commutative ring. Comm. Algebra 1992; 20, 3593-602.
[14] SH Man. On commutative noetherian rings which have the s.p.a.r. property. Arch. Math. 1998. 70, 31-40.
[15] RL McCasland and ME Moore. On radicals of submodules. Comm. Algebra 1991; 19, 1327-41.

http://wjst.wu.ac.th

[16] E Yılmaz and S Cansu. Baer's lower nilradical and classical prime submodules. Bull. Iran. Math. Soc. 2014; 40, 1263-74.
[17] SE Atani and FEK Saraei. Modules which satisfy the radical formula. Int. J. Contemp. Math. Sci. 2007; 2, 13-8.

