

http://wjst.wu.ac.th Information Technology

Walailak J Sci & Tech 2019; 16(2): 95-105.

HTTCS: Hybridization Technique for Test Case Selection

Adtha LAWANNA

Department of Information Technology, Vincent Marry School of Science and Technology,
Assumption University, Samut Prakarn 10540, Thailand

(Corresponding author’s e-mail: adtha@scitech.au.edu)

Received: 17 September 2014, Revised: 18 July 2018, Accepted: 12 August 2018

Abstract

One problem found within the process of software maintenance is that the size of the selected test
cases is large. This causes the ability of the whole process of software-development life cycle to drop.
Particularly, it may be time consuming and cause delays, and the cost may be expensive. The selection of
test cases for software maintenance depends more on the criticality of fixing bugs than the criticality of
avoiding programming errors. Therefore, selection methods are proposed, such as test-all, random, and
regression selection. This includes Technique for Test Case Selection (TTCS) and the improvement of
Test Case Selection (TCS). These techniques can provide better results, in particular, giving smaller sizes,
reduction rates, and % problem-solving than traditional techniques. However, this paper proposes a new
model, which is a combination of using the process of determining an appropriate number of selected test
cases regarding TTCS, and TCS with testing-based selection, named the Hybridization Technique for Test
Case Selection (HTTCS). Obviously, HTTCS can reduce the size of the selected test cases by about 96.86
- 98.83 %, which is better than TTCS and TCS, by about 0.29 - 16.51 %. Additionally, using HTTCS can
increase the % problem-solving by up to 99.98 %, is which higher than others about at most 0.66 %.

Keywords: Software maintenance, selection, coverage, test case, hybridization

Introduction

The Software-Development Life Cycle contains several processes, which include getting
requirements, coding, testing, and maintenance [1]. This paper focuses on the process of software
maintenance, in which problems can remain after using selection technique for choosing appropriate test
cases used in the entire process of testing programs and fixing problems, e.g., bugs or faults [2].

Problems in software maintenance concerns selecting test cases from a test pool, which may depend
upon the numbers of function, lines of code, or fault version. Accordingly, there have been many methods
proposed for reducing the numbers of selected test cases in order to provide a smaller size of testing and
keeping competency. In the past, the retest-all technique was used to maintain and modify programs
regarding changes of user requirements, which were business-driven. Unfortunately, this could not deal
with the time consumption and cost of retaining codes. During that time, the random technique was first
proposed to control the situation. This results in good selection in terms of reducing the numbers of
selected test cases, but it cannot guarantee the accuracy of the maintenance. Therefore, regression methods
are proposed for a good selection, which are better than traditional methods. They provide smaller
numbers of selected test cases. Accordingly, testing time and competency are preserved. However, many
techniques have been proposed for improving the ability of selection, e.g., Technique for Test Case
Selection (TTCS) and the improvement of Test Case Selection (TCS). Accordingly, using these
techniques, the entire performances are improved. In particular, the numbers of selected test cases are
small, and the competency is preserved. However, this paper looks for a better method to increase the
ability of reducing the numbers of the selected test cases. In the meantime, problem-solving is still

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

96

preserved. This paper proposes a new technique named Hybridization Technique for Test Case Selection
(HTTCS). The objectives of proposing HTTCS are shown as follows;

(1) To provide minimum numbers of the selected test cases compared with the comparative studies.
(2) To provide a higher % of problem-solving in terms of reducing bugs that could occur during the

process of testing.
This paper includes the process of software maintenance, which is concerned with conducting

change in this part of the software-development life cycle. Developers interact continually with teams,
clients, and users in order to detect faults. Testers must be good investigators, testing programs by using a
set of selected test cases thoroughly and chasing the sources of the errors [3]. Therefore, the HTTCS is
proposed to handle these problems.

Materials and methods

Definition
Table 1 is an explanation of terms used in this paper. There are 3 comparative studies presented,

which use TTCS, TCS, and HTTCS, respectively. Additionally, some terms are represented for more
understanding.

Table 1 Definitions used in HTTCS.

Symbol Description
N Numbers of functions
L Lines of code
F Faulty versions
TTCS Technique for Test Case Selection in Software Maintenance
TCS Improvement of Test Case Selection
HTTCS Hybridization Technique for Test Case Selection
T Numbers of test case regarding f(N,L,F)
T* Numbers of test case regarding f(L,F)
T** Numbers of test case regarding f(F)
T Selected test case
Cov(L) Coverage area of L
Cov(N) Coverage area of N
Cov(F) Coverage area of F

 Dataset
A summary of the assets of the 7 programs is found in Table 2. Accordingly, “L” refers to the lines

of code. Additionally, “N” is the number of functions, and “F” the faulty versions. The experiments
needed a set of 7 well-known subject programs written in C. They were established by the Siemens suite
of programs with hand-scattered bugs or faults, first used by Hutchins et al. [4]. These programs have
subsequently been modified and extended by other agents, particularly Rothermel and Harrold [5,6] and
Graves et al. [7]. These programs are chosen because of their historical significance.

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

97

Table 2 Average test cases in each test suite by Rothermel and Harrold.

Name N L F T
Print-tokens 18 402 7 4,130
Print-tokens2 19 483 10 4,115
Replace 21 516 32 5,542
Schedule 18 299 9 2,650
Schedule2 16 297 10 2,710
Tcas 9 148 41 1,608
Totinfo 7 346 23 1,052

Methods
TTCS: Technique for Test Case Selection in Software Maintenance [8]
TTCS is test case selection based on determining the numbers of test cases by using the integral

technique on factors, e.g., N, L, and F. Particularly, the numbers of selected test cases are equivalent to

∫∫∫
f

f
000

),,(dndldFLNf
ln

over the total number of test cases existing in a test pool. There are 2 methods

created, which are described as follows;

Method 1: Finding the relationship of),,(FLNf

If ∫∫∫=∑
f

f
000

),,(dndldFLNfT
ln

 (1)

Then compute

∫∫∫=∑
lf

f
000

),,(ldldndLFNfT
n

 (2)

ElseIf

∫∫∫=∑
lnf

f
000

),,(dndldLNFfT (3)

Then compute

∫∫∫=∑
nlf

f
000

),,(dldndNLFfT (4)

ElseIf

∫∫∫=∑
nl

f
0

f

00
),,(dndldNFLfT (5)

Then compute

∫∫∫=∑
f

00

l

0
),,(dldndfFNLfT

n
 (6)

EndIf
EndIf

End
where, over a specific (N,L), the variable F is restricted between g(N,L) and h(N,L) and, for a precise N,
the variable L is restricted between s(N) and t(L).

Method 2: Finding the total numbers of test cases

If ∫∫∫=
f

f
000

),,(dndldFLNfT
ln

where nN ≤≤0

Then select T

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

98

 ElseIf

∫∫=
f

f
11

*),(dldFLfT
l

where lL ≤≤0

Then select T*

ElseIf ∫=
f

f
0

**)(dFfT where f0 ≤≤ F

 Then select T**
 EndIf
 EndIf
End

Method 3: Selecting the test cases
The algorithm for selecting the test cases have been found through 3 situations, described as follows;

Situation 1: ∫∫∫=
f

000
f),,(dndldFLNfT

ln

(1) Check frequency of each T
(2) Find Frequencymax
(3) Select the test cases that have Frequencymax
(4) (Re)find Frequencymax
(5) Do (2) to (4) until the numbers of selected test cases equivalent to T.

Situation 2: ∫∫=
f

f
11

*),(dldFLfT
l

 (7)

(1) Check frequency of each T*
(2) Find Frequencymax
(3) Select the test cases that have Frequencymax
(4) (Re)find Frequencymax
(5) Do (2) to (4) until the numbers of selected test cases equivalent to T*.

Situation 3: ∫=
f

f
0

**)(dFfT (8)

(1) Check frequency of each T**
(2) Find Frequencymax
(3) Select the test cases that have Frequencymax
(4) (Re)find Frequencymax
(5) Do (2) to (4) until the numbers of selected test cases equivalent to T**.

TCS: Improvement of Test Case Selection [9]
TCS is the technique of finding selected test cases regarding a designing test case template, creating

the details of test cases and testing help, producing a test pool, and selecting test cases. There are several
steps, described as follows;

Step 1: Create Test Case Template
Step 2: Assign Details of Test Cases
Step 3: Create Testing Help
Step 4: Find Numbers of Test Cases

∫∫∫=
f

f
000

),,(1 dndldFLNf
aseTotalTestC

T
ln

 (9)

Step 5: Find coverage value
In this section, the details of the algorithm are created and used to determine the test cases in each

test pool due to the subject program.
If coverage area of L = f(N,F),or Cov(L) (10)

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

99

Then
T
LLCov =)((11)

 ElseIf coverage area of N = f(L,F), or Cov(N) (12)

 Then
T
NNCov =)((13)

 ElseIf coverage area of F = f(L,N) or Cov(F) (14)

 Then
T
FFCov =)((15)

 EndIf
 EndIf
End

∑ ++=))()()((FCovNCovLCovT (16)
Method 2: Selecting the test cases
Algorithm for selecting the test cases
(1) Check coverage of each T
(2) Find coveragemax
(3) Select the test cases that have coveragemax
(4) (Re)find coveragemax
(5) Do (2) to (4) until the numbers of selected test cases equivalent to T.
Accordingly, this algorithm will be applied in order to find the numbers of test cases when the

coverage is determined in regards to N or F.

HTTCS: Hybridization Technique for Test Case Selection
The Overview of HTTCS
HTTCS is the hybridization of using TTCS and testing case technique, which concerns solving

failures of the cases. As shown in Figure 1, there are 6 steps proposed, as follows;
Process 1: Define factors
In the process of software maintenance, there are many factors to consider, such as the numbers of

programmers, the ability of each programmer, testing time, bugs or faults, requirements, function, and
code. The first assumption is for a well-defined factor required for characterizing them to be useful in all
processes of testing software. For example, objects are proposed regarding their attributes. In this paper,
scale data is necessary. Therefore, each factor presents its value.

Process 2: Determine related functions
This means finding the relationships among factors existing in each subject program. On this point,

different functions can result in appropriate, or worse, testing. In particular, complexity can occur when
the numbers of functions increase. Therefore, it is important to determine what should be the related
factors.

Process 3: Use the integral technique
According to the hybridization technique, this step is applied to use method 1 and 2 of TTCS

because it gives the appropriate numbers of test cases that need to be tested. The benefit of TTCS is that it
can use simple computations but can give high accuracy. All related factors are functioned to perform the
size of test cases, which can be created for testers to utilize the efficiency of modifying the whole previous
software to be adopted in the process of program maintenance.

Process 4: Test case
Assume that, if testing is done, the statement will be “pass” or “fail”. Accordingly, the test cases are

tested and give 2 results, which can be represented by “1” if it passes, or “0” if it fails. In this paper, the

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

100

“fail” will be important for the next step. This is because it may affect the entire program. Regarding this,
bugs or faults exist and need to be fixed.

Process 5: Select test case
Test cases that have a result of “fail” are required and, thus, selected. On the other hand, “pass” test

cases are not selected, as these refer to cases with no bugs to be fixed.

Process 6: Fix problem
This step means fixing bugs for test cases that are selected from the test pool. However, this paper

does not show the details of fixing the bugs, which occur differently in the test pool.

Figure 1 Overview of HTTCS.

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

101

The Conceptual Model of HTTCS
This section presents the proposed model, named HTTCS, which gives a higher performance than

the comparative studies. It combines 2 concepts, one from using TTCS, and another based on testing.
Step 1: Designing test cases by method 1&2 of TTCS

},...,,,{ 321 nttttT = (17)
Case I: Retrieve factor N, L, and F respectively

If function = FLN ++ (18)
Then compute the numbers of T

∫∫∫ ++=
lf

f
000

)(ldldndFLNT
n

 (19)

 End
Case II: Retrieve factor F,N, and L respectively

If function = LNF ++ (20)
Then compute the numbers of T

∫∫∫ ++=
ln

f
000

)(ldldndLNFT
f

 (21)

End
Case III: Retrieve factor L,F, and N respectively

If function = NFL ++ (22)
Then compute the numbers of T

∫∫∫ ++=
nlf

f
000

)(dldndNFLT (23)

End
According to Case I throughout III, the results of using these algorithms will be shown as;

2

222 NLFFNLLFNT ++
= (24)

In general, when factors are increased, they can be computed simply. For example, if factor time
(TM) and number of programmers are added, then the computation will be noted as;

2
)()()()()(22222 PTMNLFPTMNLFPTMNLFPTMFNLPTMLFNT ++++

= (25)

However, these can be used for determining only the numbers of the relevant test cases available in
the test pool. It does not present the methods of selecting what the selected test cases should be.

Step 2: Testing
Testing cases give 2 results, which are “pass” or “fail”, shown as;





=
=

=
passt
failt

t
**

*
1
0

 (26)

Do
Read t

Case
 When 0* =t

failt =*
 When 1** =t
 passt =**
EndCase

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

102

Until t is empty
Write
 *tt =
End
The results of testing give 2 answers, which are “pass” or “fail”. This algorithm is proposed for

selecting those test cases where the answers are “fail” until no cases are found anymore. According to this,
the bugs that could occur are solved later.

Step 3: Selecting test case
If 0* =t then
 Select *t
 ElseIf 1** =t then
 Remove **t

EndIf
End

Accordingly, the numbers of selected test cases are chosen, whereas the results of testing are “fail”.
This refers to the probability that problems are found in those selected cases. On the other hand, cases
which are testing result in “pass” had no problems found in those cases. Therefore, the selection focuses
on test cases that have problems to be selected test cases, because they may affect the whole process of
testing software.

Results and discussion

The numbers of relevant test cases are reported in Table 2 by using the concept of integral
technique, which needs 3 factors, e.g., N, L, and F [5,6].

For example, determination of the numbers of test cases for a subject program named Print-tokens is
explained as follows [8];

By TTCS

FLNdndldFLNfT
ln

××÷= ∫∫∫
f

f
000

),,(

FLNdndldFLNT
ln

××÷++= ∫∫∫
f

f
000

)(

FLNNLFFNLLFNT ××÷
++

=
2

222

)7)(402)(18(
2

)7)(402)(18()7()402)(18()7)(402(18 222
÷

++
=T

652,50202,814,10 ÷=T
214=T

By TCS
This approach is improved by using the previous method. Therefore, the number of chosen test cases

is used for completing a further step, which is to find the test case that has the maximum coverage value.
Accordingly, we continue finding the number of selected test cases until it is equivalent to T.

According to the experiment, the example of finding Cov(N), Cov(L), and Cov(F) for the subject
program named Print-tokens is shown as follows [9];

Cov(N)= 37
Cov(L)=33
Cov(F)=35

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

103

T= Cov(N)+Cov(L)+Cov(F)
T=105

This means that the numbers of selected numbers equal 105, which can cover all test cases in a test

poll (4,130). The rest of the subject programs are experimented with by the same method. The results of
finding the selected test cases of the comparative studies are shown in Table 3.

By HTTCS
At first, the method of finding T is similar to TTCS, which results in 214 picked out test cases. Later,

a set of the chosen test cases is evaluated to find “pass” or “fail”. According to the experiment, there are
49 test cases resulting in “fail” [9]. These are necessary to be effective selected test cases, required by
using the second method of HTTCS, which is explained above.

Table 3 shows the results of finding the numbers of selected test cases by using 3 comparative
studies, which are TTCS, TCS, and HTTCS. Obviously, we can see that the number of selected test cases
by using HTTCS is smallest, which is relevant to the first objective proposed in this paper. This is because
applying HTTCS can provide benefit by trying to use the selection methods regarding the algorithm
provided in TTCS and TCS, including choosing the number of selected test cases that resulted in “fail”.
Tables 3 and 4 present % size of using HTTCS, which is less than that from applying TTCS and TCS. For
example, in Print-tokens, % size of HTTCS is less than TTCS and TCS by 336.73 and 114.29 %,
respectively [8,9]. According to this, using HTTCS technique can reduce the complexity of testing when it
concerns the number of selected test cases. Table 5 shows the results of % reduction rate of the
comparative studies compared with the size computed by Rothermel and Harrold [5,6]. TTCS can
decrease the size by about 80 - 95 %; TCS shows a better reduction of 96 - 99 %. However, when
comparing these results using HTTCS, the performances of the comparative studies are less than the
proposed model (97 - 99 %). Table 6 shows the results of determining the % reduction of the 3 techniques
when comparing HTTCS versus TTCS and TCS, respectively [8,9]. For example, by using a subject
program named Tcas, % reduction rate using HTTCS is greater than that of TTCS and TCS by 22.68 and
0.51 %, respectively. Table 7 presents the ability of solving problems found in the set of the selected test
cases. Obviously, the results shown using the comparative studies run around 99.24 - 99.82, 99.71 - 99.93,
and 99.90 - 99.98 % when experimenting with TTCS, TCS, and HTTCS, respectively. Table 8 is a
summary of using HTTCS, which is greater than TTCS by about 0.07 - 0.26 regarding the 7 subject
programs. Additionally, HTTCS shows higher % efficiency than TCS by 0.00 - 0.25 %. This may reflect
that all % efficiency, in terms of testing programs by using the comparative studies, result in very high
value. However, one of the objectives regarding using HTTCS is also reached. The results may not be
significant, but to apply the proposed method can give a better performance, shown by the experimental
results.

Table 3 Numbers of test cases from several methods.

Name TTCS TCS HTTCS
Print-tokens 214 105 49
Print-okens2 256 60 55
Replace 285 114 65
Schedule 163 69 37
Schedule2 162 78 37
Tcas 316 31 23
Totinfo 99 40 33

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

104

Table 4 % size of HTTCS is less than the comparative studies.

Name TTCS vs HTTCS TCS vs HTTCS
Print-tokens 336.73 114.29
Print-okens2 365.45 9.09
Replace 338.46 75.38
Schedule 340.54 86.49
Schedule2 337.84 110.81
Tcas 1273.91 34.78
Totinfo 200.00 21.21

Table 5 % reduction rate.

Name TTCS TCS HTTCS
Print-tokens 94.82 97.46 98.81
Print-okens2 93.78 98.54 98.66
Replace 94.86 97.94 98.83
Schedule 93.85 97.40 98.60
Schedule2 94.02 97.12 98.63
Tcas 80.35 98.07 98.57
Totinfo 90.59 96.20 96.86

Table 6 % reduction rate of HTTCS is greater than the comparative studies.

Name HTTCS vs TTCS HTTCS vs TCS
Print-tokens 4.21 1.39
Print-okens2 5.21 0.12
Replace 4.18 0.90
Schedule 5.07 1.24
Schedule2 4.91 1.56
Tcas 22.68 0.51
Totinfo 6.93 0.69

Table 7 % Problem-Solving of HTTCS is greater than the comparative studies.

Name TTCS TCS HTTCS
Print-tokens 99.81 99.93 99.98
Print-okens2 99.81 99.88 99.93
Replace 99.91 99.93 99.95
Schedule 99.70 99.85 99.96
Schedule2 99.82 99.82 99.89
Tcas 99.69 99.75 99.94
Totinfo 99.24 99.71 99.90

Technique for Test Case Selection in Software System Adtha LAWANNA
http://wjst.wu.ac.th

Walailak J Sci & Tech 2019; 16(2)

105

Table 8 % efficiency of HTTCS is greater than the comparative studies.

Name HTTCS-TTCS HTTCS-TCS
Print-tokens 0.10 0.07
Print-okens2 0.10 0.00
Replace 0.07 0.02
Schedule 0.26 0.15
Schedule2 0.15 0.15
Tcas 0.44 0.25
Totinfo 0.19 0.00

Conclusions

Both TTCS and TCS give better results than the traditional methods, such as retest-all, random, and
regression technique, do. However, HTTCS is proposed in order to improve the ability of choosing the
selected test cases by hybridizing TTCS and TCS, with the rule of selection regarding testing the test cases
which result in “fail”. This is because the problems or bugs in a test case that can be occur should be
protected. There are 4 benefits of using HTTCS shown, as follows; first, the number of selected test cases
provided by applying HTTCS is smaller than that of TTCS and TCS, by about 200 - 1274 and 9 - 114 %
respectively. Second, % reduction rate using HTTCS is better than TTCS and TCS, by about 4 - 23 and
0.5 - 1.6 % individually. Third, % problem-solving of HTTCS is about 99.89 - 99.98 %, which is higher
than that using TTCS and TCS. Lastly, % efficiency of using HTTCS is higher than TTCS and TCS by
about 0.07 - 0.44 and 0.00 - 0.25 %, respectively.

References

[1] A Abran and H Nguyemkim. Analysis of maintenance work categories tough measurement. In:
Proceedings of the Conference on Software Maintenance. USA, 1991, p. 104-13.

[2] RS Arnold. A road map guide to software re-engineering technology. In: Proceedings of the
Conference on Software Reengineering. USA, 1993, p. 3-22.

[3] G Alkhatib. The maintenance problem of application software: An empirical analysis. J. Software
Mainten. Res. Pract. 1992; 4, 83-104.

[4] M Hutchins, H Foster, T Goradia and T Ostrand. Experiments on the effectiveness of dataflow and
control flow-based test adequacy criteria. In: Proceedings of the 16th International Conference on
Software Engineering. USA. 1994, p. 191-200.

[5] G Rothermel. A safe efficient regression test selection technique. ACM Trans. Software Eng. Meth.
1997; 6, 173-210.

[6] G Rothermel and MJ Harrold. Analyzing regression test selection techniques. IEEE Trans. Software
Eng. 1996; 22, 529-51.

[7] TL Graves, MJ Harrold, MJ Kim, A Porter and G Rothermel. An empirical study of regression test
selection techniques. ACM Trans. Software Eng. Meth. 2001; 10, 184-208.

[8] A Lawanna. Technique for test case selection in software maintenance. Walailak J. Sci. & Tech.
2014; 11, 69-77.

[9] A Lawanna. The improvement of test case selection for the process of software maintenance.
Inform. Tech. J. 2014; 10, 73-81.

