WALAILAK JOURNAL

Novel Series of Pyrimidine Derivatives as Anti-inflammatory Agents

Anshu CHAYDHARY^{1,2,*}, Anoop SINGH¹ and Prabhakar KUMARVERMA³

¹Nims Institute of Pharmacy, Nims University, Rajasthan, India ²Vishveshwarya Institute of Medical Science Dadri, Uttar Pradesh, India ³Department of Pharmaceutical Sciences, M. D. University, Haryana, India

(*Corresponding author's e-mail: anshu_17oct@yahoo.co.in)

Received: 16 January 2015, Revised: 21 August 2015, Accepted: 29 September 2015

Abstract

A series of compound 6-bromo-3-(6-substitutedphenyl)-2-(morpholinomethylamino) pyrimidin-4yl)-2H-chromen-2-one ($BT_1M-T_{10}M$), 3(2-((piperidin-1-yl) methylamino)-6- (2-substitutedphenyl) pyrimidin-4-yl)-6-bromo-2H-chromen-2-one ($BT_1P-BT_{10}P$) has been synthesized from 3-(2-amino-6 pyrimidin- 4-yl)-6- bromo- 2H-chromen-2-one (T_1-T_{10}). The structures of the synthesized compounds were elucidated by I.R., ¹HNMR, elemental analysis and mass spectroscopic techniques. The synthesized compounds were screened for *in-vivo* anti-inflammatory activity at a dose of 50 mg/kg body weight by a carrageenan-induced rat paw edema method. Among them, compounds BT_8M , BT_4P , BT_5P , and BT_7P exhibited significant anti-inflammatory activity. Compounds BT_3M , BT_9M , $BT_{10}M$, BT_9P , and $BT_{10}P$ showed highly significant anti-inflammatory activity. The remaining compounds showed less antiinflammatory activity, comparable to that of standard drug diclofenac sodium.

Keywords: Pyrimidine, anti-inflammatory activity, rat paw edema

Introduction

Non-steroidal anti-inflammatory drugs (NSAIDs) have been among the most widely used therapeutics for decades, primarily for the treatment of pain and inflammation in arthritis. However, long-term clinical usage of NSAIDs is associated with significant side effects, such as gastrointestinal lesions, bleeding, and nephrotoxicity. Therefore, the discovery of new, safer, anti-inflammatory and analgesic drugs represents a challenging goal for such a research area [1].

Pyrimidines, being an integral part of DNA and RNA, possess diverse pharmacological properties as effective bactericide and fungicides [2]. Nitrogen containing heterocyclic rings, such as pyrimidine, is a promising structural moiety for drug design. Pyrimidine derivatives are found in a number of useful drugs, and are associated with many biological activities [3]. Condensed pyrimidine derivatives have been reported as being anti-microbial [4], analgesic, anti-viral, anti-inflammatory [5], anti-HIV, anti-tubercular [6], anti-tumor [7], anti-neoplastic [8], anti-malarial [9], diuretic [10], and cardiovascular agents [11]. Pyrimidine compounds are also used as hypnotic drugs for the nervous system [12], calcium-sensing receptor antagonists [13], and also as antagonists of the human A2A adenosine receptor [14]. Like pyrimidine, coumarin also exhibits diverse biological properties [15]. It was envisaged that these 2 active pharmacophores, if linked together, would generate novel molecular templates which are likely to exhibit interesting biological properties in animal models. The above-cited applications prompted us to synthesize a series of new compounds, reported in this article.

Owing to its importance, we here describe in this paper the synthesis of new pyrimidine derivatives from 3-acetyl-6-bromo-2H-chromen-2-one (3). The compounds were screened for their anti-inflammatory activity. Thus, we have created new avenues to explore the potent heterocyclic moieties for pharmacological activities in medicinal chemistry.

Materials and methods

Chemistry

All reagents and solvents were used as obtained from the supplier. The melting points of the products were determined by the open capillaries method and were uncorrected. I.R. Spectra (KBr) were recorded on a Fourier transform infrared (FTIR) Spectrophotometer (Shimadzu FTIR 84005, 4000 - 400 cm⁻¹). ¹H-nuclear magnetic resonance (NMR) spectra were recorded on a JEOL AL300 FTNMR 300 MHz spectrometer in CDCl₃ using TMS as an internal standard, with ¹H resonance frequency of 300 MHz chemical shift values expressed in δ ppm. Mass spectra were recorded on a 70 eV EI-MS-QP 1000 EX (Schimadzu). The elemental analysis was carried out using a Heraus CHN rapid analyser. The homogeneity of the compounds was described by TLC on alumina silica gel using a solvent system "toluene: ethyl acetate: formic acid" (5:4:1) and "benzene: acetone" (9:1), detected by iodine vapours. The physical data of all these compounds are summarized in **Tables 1 - 4**.

General procedures for the preparation of compounds Synthesis of 3-acetyl-6-bromo-2H-chromen-2-one (3):

A mixture of 5-bromosalicyldehyde (0.02 mol) and ethyl acetoacetate (2) (0.03 mol) in ethanol were placed in a round bottom flask. To this mixture, a few drops of piperidine were added and refluxed for 2-3 h. After completion of the reaction, the content was poured onto crushed ice. The solid separated was filtered, dried, and recrystallized from ethanol. Compound 3-acetyl-6-bromo- 2H-chromen-2-one can be explained on the basis of "Knoevenagel reaction". The purity of compound was established on the basis of TLC and melting point.

Synthesis of 3-acetyl-6-bromo- 2H-chromen-2-one: This was obtained from the reaction of 5-bromo salicyldehyde (1) with ethylacetoacetate in the presence of piperidine. M.P. 115 - 117 °C; % Yield:75 %; molecular formula; $C_{11}H_7BrO_3$; molecular weight:267.08; IR (KBr, cm⁻¹): 1735.26 and 1675.61 (C=O), 1549.96 (C=C), 1232.96 (aryl ethers, C-O-C); ¹H NMR (CDCl₃-d₆, δ , ppm): 2.72 (s, 3H, CH₃), 7.25 - 7.78 (m, 3H, Ar-H), 8.40 (s, 1H, Ar-H).

Synthesis of compounds (BS₁-BS₁₀):

Equimolar quantities of 3-acetyl-6-bromo-2H-chromen-2-one and different quantities of substituted benzaldehyde were refluxed in absolute ethanol, using piperidine as a catalyst, for 8 - 10 h. The solution mixture was concentrated and poured onto crushed ice. The compound so obtained was filtered by a vacuum pump, dried, and recrystallized from ethanol to get pure crystalline solid. The formation of compounds (BS₁-BS₁₀) can be explained on the basis of "Claisen-Schmidt condensation".

Synthesis of 6-bromo-3-((E)-3-(2-chlorophenyl)-acryloyl)-2H-chromen-2-one (BS₁): This was obtained from the reaction of compound 3 with 2-Chlorobenzaldehyde. IR (KBr, cm⁻¹): 1629.74 and 1608.52 (C=O), 1585.38 (C=C), 1116.71 (C-O-C), 749.62 (C-Cl), 526.53(C-Br).

Synthesis of 6-bromo-3-((E)-3-(3-chlorophenyl)-acryloyl)-2H-chromen-2-one (BS₂): This was obtained from the reaction of compound 3 with 3-Chlorobenzaldehyde. IR (KBr, cm^{-1}): 1688.5 and 1635.52 (C=O), 1589.23 (C=C), 1141.78 (C-O-C), 694.33 (C-Cl), 576.68 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(4-chlorophenyl)-acryloyl)-2H-chromen-2-one (BS₃): This was obtained from the reaction of compound 3 with 4-Chlorobenzaldehyde. IR (KBr, cm⁻¹): 1772.74 and 1608.52 (C=O), 1571.88 (C=C), 1176.50 (C-O-C), 757.97 (C-Cl), 590.18 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(2-bromophenyl)-acryloyl)-2H-chromen-2-one (BS₄): This was obtained from the reaction of compound 3 with 2-Bromobenzaldehyde. IR (KBr, cm⁻¹): 1741.80 and 1614.03 (C=O), 1557.71 (C=C), 1159.41 (C-O-C), 638.67 (C-Cl), 523.31 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(3-bromophenyl)-acryloyl)-2H-chromen-2-one (BS₅): This was obtained from the reaction of compound 3 with 3-Bromobenzaldehyde. IR (KBr, cm⁻¹): 1637.45 and 1627.81 (C=O), 1585.38 (C=C), 1155.28 (C-O-C), 754.12 (C-Cl), 565.10 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(4-bromophenyl)-acryloyl)-2H-chromen-2-one (BS₆): This was obtained from the reaction of compound 3 with 4-Bromobenzaldehyde. IR (KBr, cm⁻¹): 1683.74 and 1635.22 (C=O), 1504.37 (C=C), 1128.28 (C-O-C), 698.18 (C-Cl), 594.03 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(2-methoxyphenyl)-acryloyl)-2H-chromen-2-one (BS₇): This was obtained from the reaction of compound (3) with 2-Methoxybenzaldehyde. IR (KBr, cm⁻¹): 1734.87 and 1675.83 (C=O), 1550.38 (C=C), 1069.87 (C-O-C), 659.77 (C-Cl), 559.43 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(3-methoxyphenyl)-acryloyl)-2H-chromen-2-one (BS₈): This was obtained from the reaction of compound 3 with 3-Methoxybenzaldehyde. IR (KBr, cm⁻¹): 2854.45 (C-H stretch of O-CH₃), 1670.24 and 1637.45 (C=O), 1585.38 (C=C), 1151.42 (C-O-C), 757.97 (C-Cl), 570.89 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(2, 4-dichlorophenyl)-acryloyl)-2H-chromen-2-one (BS₉): This was obtained from the reaction of compound 3 with 2, 4-dichlorobenzaldehyde. IR (KBr, cm⁻¹): 1691.46 and 1641.31 (C=O), 1577.66 (C=C), 1149.50 (C-O-C), 696.25 (C-Cl), 578.60 (C-Br).

Synthesis of 6-bromo-3-((E)-3-(2, 6-dichlorophenyl)-acryloyl)-2H-chromen-2-one (BS₁₀): This was obtained from the reaction of compound 3 with 2, 6-dichlorobenzaldehyde. IR (KBr, cm⁻¹): 1691.40 and 1639.38 (C=O), 1585.35 (C=C), 1155.28 (C-O-C), 692.40 (C-Cl), 588.25 (C-Br).

Synthesis of compounds (BT₁-BT₁₀):

A mixture of compounds (BS_1-BS_{10}) (0.01 mol) and guanidine HCl (0.02 mol) was refluxed in ethanol for 8 - 10 h. The content was evaporated to dryness, and so the product obtained was washed with water repeatedly and recrystallized from ethanol.

Synthesis of 3-(2-amino-6-(2-chlorophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₁): This was obtained from reacting BS₁ with guanidine HCl. IR (KBr, cm⁻¹): 3151.47 (N-H stretch), 1650.95 (C=O), 1596.95 & 1361.65 (C-N stretch), 1249.79 (C-O-C), 894.91 (C-N bend), 817.76 (C-Cl), 759.90 (NH₂ bend), 659.61 (C-Br); ¹HNMR (CDCl₃-d₆, δ, ppm): 4.72 (s, 2H, NH₂), 6.72 - 7.25 (m, 9H, Ar-H).

Synthesis of 3-(2-amino-6-(3-chlorophenyl)-pyrimidin-4-yl)-6-bromo-2H–chromen-2-one (BT₂): This was obtained from reacting BS₂ with guanidine HCl. IR (KBr, cm⁻¹) 3294.19 (N-H stretch), 1654.81 (C=O), 1596.95 & 1253.64 (C-N stretch), 1234.36 (C-O-C), 871.76 (C-N bend), 817.76 (C-Cl), 763.76 (NH₂ bend), 659.61 (C-Br); ¹HNMR (CDCl₃-d₆, δ, ppm): 4.88 (s, 2H, NH₂), 6.84 - 7.25 (m, 9H, Ar-H)

Synthesis of 3-(2-amino-6-(4-chlorophenyl)-pyrimidin-4-yl)-6-bromo-2H–chromen-2-one (BT₃): This was obtained from reacting BS₃ with guanidine HCl. IR (KBr, cm⁻¹): 3340.48 (N-H stretch), 1685.67 (C=O), 1593.09 & 1365.51 (C-N stretch), 1238.21 (C-O-C), 871.76 (C-N bend), 817.76 (C-Cl), 756.04 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ, ppm): 4.88 (s, 2H, NH₂), 6.90 - 7.48 (m, 9H, Ar-H).

Synthesis of 3-(2-amino-6-(2-bromophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₄): This was obtained from reacting BS₄ with guanidine HCl. IR (KBr, cm⁻¹) 3355.91 (N-H stretch), 1654.81 (C=O), 1542.95 & 1365.51 (C-N stretch), 1238.21 (C-O-C), 875.62 (C-N bend), 779.19 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm): 3.51 (s, 2H, NH₂), 6.90 - 7.60 (m, 9H, Ar-H).

Synthesis of 3-(2-amino-6-(3-bromophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₅): This was obtained from reacting BS₅ with guanidine HCl. IR (KBr, cm⁻¹): 3355.91 (N-H stretch), 1654.81 (C=O), 1542.95 & 1373.22 (C-N stretch), 1269.07 (C-O-C), 871.76 (C-N bend), 779.19 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ, ppm): 3.94 (s, 2H, NH₂), 6.72 - 7.41 (m, 9H, Ar-H).

Synthesis of 3-(2-amino-6-(4-bromophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₆): This was obtained from reacting BS₆ with guanidine HCl. IR (KBr, cm⁻¹): 3417.63 (N-H stretch), 1666.38 (C=O), 1577.66 & 1384.79 (C-N stretch), 1234.36 (C-O-C), 871.76 (C-N bend), 759.90 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm): 3.51 (s, 2H, NH₂), 6.92 - 7.52 (m, 9H, Ar-H)

Synthesis of 3-(2-amino-6-(2-methoxyphenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₇): This was obtained from reacting BT₇ with guanidine HCl. IR (KBr, cm⁻¹) : 3382.91 (N-H stretch), 2835.16 (C-H stretch of O-CH₃), 1670.24 (C=O), 1550.66 & 1384.79 (C-N stretch), 1477.37 (CH₃ umbrella mode), 1245.93 (C-O-C), 871.76 (C-N bend), 756.04 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm): 3.88 (s, 3H, CH₃), 3.93 (s, 2H, NH₂), 6.90 - 7.60 (m, 9H, Ar-H).

Synthesis of 3-(2-amino-6-(3-methoxyphenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₈): This was obtained from reacting BS₈ with guanidine HCl. IR (KBr, cm⁻¹): 3367.48 (N-H stretch),

2935.46 (C-H stretch of O-CH₃), 1666.38 (C=O), 1577.66 & 1384.79 (C-N stretch), 1477.37 (CH₃ umbrella mode), 1265.22 (C-O-C), 871.76 (C-N bend), 783.05 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm): 3.882 (s, 3H, CH₃), 3.887 (s, 2H, NH₂), 6.92 - 7.73 (m, 9H, Ar-H)

Synthesis of 3-(2-amino-6-(2,4-dichlorophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₉): This was obtained from reacting BS₉ with guanidine HCl. IR (KBr, cm⁻¹): 3417.63 (N-H stretch), 1677.95 (C=O), 1589.23 and 1384.79 (C-N stretch), 1234.36 (C-O-C), 867.91 (C-N bend), 817.76 (C-Cl), 775.33 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm): 5.22 (s, 2H, NH₂), 6.93 - 7.42 (m, 7H, Ar-H), 7.97 (s, 1H, CH).

Synthesis of 3-(2-amino-6-(2,6-dichlorophenyl)-pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₁₀): This was obtained from reacting BS₁₀ with guanidine HCl. IR (KBr, cm⁻¹): 3425.34 (N-H stretch), 1604.66 (C=O), 1589.23 and 1384.79 (C-N stretch), 1265.22 (C-O-C), 871.76 (C-N bend), 817.76 (C-Cl), 775.33 (NH₂ bend), 628.75 (C-Br); ¹HNMR (CDCl₃-d₆, δ , ppm) : 5.18 (s, 2H, NH₂), 6.72 - 7.41 (m, 7H, Ar-H), 7.94 (s, 1H, CH).

Synthesis of compounds (BT₁M-BT₁₀M):

A mixture of compounds BT_{1} - BT_{10} (0.01 mol), morpholine (0.01 mol) and formaldehyde (0.02) was refluxed in ethanol for 6 - 10 h. The reaction mixture was reduced to half of its volume and poured onto crushed ice. The product so obtained was washed with water repeatedly, dried, and recrystallized from ethanol. The formation of compounds ($BT_{1}M$ - $BT_{10}M$) can be explained on the basis of "Mannich reaction".

Synthesis of 6-bromo- 3-(6-(2-chlorophenyl)-2-(morpholinomethylamino)pyrimidin-4- yl) -2H-chromen-2-one (BT₁M): This was obtained from reacting BT₁ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3440.77 (N-H stretch), 1641.31 (C=O),1384.79 (C=N stretch),1629.74 (C=C),1116.71 (C-O-C); ¹HNMR (CDCl₃-d₆, δ , ppm): 1.253 (t,4H,2 x CH₂), 2.506(t,4H,2 x CH₂), 3.737 (t,4H,2 x CH₂), 4.253 (s,2H, CH₂) 6.498 - 7.516 (m, 9H, Ar-H); MS m/z: 527.0, 410.9,303.1(100 %), 217.0, 151.1; elemental analysis (C₂₄H₂₀N₄O₃ClBr), found % (calculated %): C,54.61 (54.62); N,10.60 (10.61).

Synthesis of 6-bromo-3-(6-(3-chlorophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₂M): This was obtained from reacting BT₂ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3417.63 (N-H stretch), 1645.8 (C=O),1587.31 and 1382.87 (C=N stretch) ,1573.81 (C=C),1134.07 (C-O-C), 852.48 (C-N bend) , 688.18 (C-Cl); ¹HNMR (CDCl₃-d, δ , ppm): 2.50 (s, 1H, NH), 2.093-2.28 (t, 4H, 2 x CH₂), 3.43 (t, 4H, 2 x CH₂), 4.459 (s, 2H, CH₂), 6.66 - 7.89 (m, 9H, Ar-H).

Synthesis of 6-bromo-3-(6-(4-chlorophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₃M): This was obtained from reacting -BT₃ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3452.34 (N-H stretch), 1660.60 (C=O),1604.66 and 1384.79 (C=N stretch) ,1575.73 (C=C),1153.35 (C-O-C), 746.40 (C-N bend) , 665.40 (C-Cl); ¹HNMR (CDCl₃-d, δ , ppm): 2.514 (s, 1H, NH), 1.252 - 1.687 (t, 4H, 2 x CH₂), 3.729 (t, 4H, 2 x CH₂), 4.254 (s, 2H, CH₂), 6.907 - 7.256 (m, 9H, Ar-H); MS m/z: 527.8, 304.0, 222.93, 204.0, 163.0; elemental analysis (C₂₄H₂₀N₄O₃ClBr), found % (calculated %): C,54.60 (54.62); N, 10.60 (10.61).

Synthesis of 6-bromo-3-(6-(2-bromophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₄M): This was obtained from reacting BT₄ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3417.63 (N-H stretch), 1674.10 (C=O), 1612.38 and 1377.08 (C=N stretch), 1562.23 (C=C),1377.08 (C-O-C), 829.33 (C-N bend), 540.03 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 2.514 (s, 1H, NH), 1.254 - 2.392 (t, 4H, 2 x CH₂), 3.740 (t, 4H, 2 x CH₂), 4.051 (s, 2H, CH₂), 7.260 - 8.668 (m, 9H, Ar-H); MS m/z: 517.0, 347.0, 206.9, 156.2,100.2 (100 %); elemental analysis (C₂₄H₂₀N₄O₃Br₂), found % (calculated %): C, 50.39 (50.37); N, 9.77 (9.79).

Synthesis of 6-bromo-3-(6-(3-bromophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2Hchromen-2-one (BT₅M): This was obtained from reacting BT₅ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3421.48 (N-H Stretch), 1677.95 (C=O), 1612.38 and 1365.51 (C=N stretch), 1558.38 (C=C), 1365.51 (C-O-C), 871.76 (C-N bend), 551.60 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 2.305 (s, 1H, NH), 1.138 - 1.305 (t, 4H, 2 x CH₂), 3.583-3.856 (t, 4H, 2 x CH₂), 5.290 (s, 2H, CH₂), 6.980 - 7.181 (m, 9H, Ar-H). Synthesis of 6-bromo-3-(6-(4-bromophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2Hchromen-2-one (BT₆M): This was obtained from reacting BT₆ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3402.20 (N-H stretch), 1685.67 (C=O), 1604.66 and 1365.51 (C=N stretch), 1558.38 (C=C), 1164.92 (C-O-C), 821.62 (C-N bend), 570.89 (C-Br).¹HNMR (CDCl₃-d, δ , ppm): 3.331 (s, 1H, NH), 1.124 - 1.300 (t, 4H, 2 x CH₂), 3.353-3.908 (t, 4H, 2 x CH₂), 5.290 (s, 2H, CH₂), 6.629 - 7.786 (m, 9H, Ar-H).

Synthesis of 6-bromo-3-(6-(2-methoxyphenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₇M): This was obtained from reacting BT₇ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3261.40 (N-H stretch), 2835.16 (C-H stretch of O-CH₃), 1641.31 (C=O), 1629.74 and 1384.79 (C=N stretch),1596.95 (C=C),1114.78 (C-O-C); ¹HNMR (CDCl₃-d, δ , ppm): 2.499 (s, 1H, NH), 1.154 - 1.714 (t, 4H, 2 x CH₂), 2.905 (t, 4H, 2 x CH₂), 3.696(s, 3H,OCH₃) 4.254 (s, 2H, CH₂), 6.944 - 7.293 (m, 9H, Ar-H) ;MS m/z: 523.1, 237.0 (100 %), 221.1, 205.1, 193.1;elemental analysis (C₂₅H₂₃N₄O₃Br), found % (calculated %): C,50.39 (57.37); N, 10.71 (10.70).

Synthesis of 6-bromo-3-(6-(3-methoxyphenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₈M): This was obtained from reacting $-BT_8$ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3440.77 (N-H stretch), 2854.45 (C-H stretch of O-CH₃), 1608.10 (C=O), 1608.52 and 1384.79 (C=N stretch), 1550.66 (C=C), 1137.92 (C-O-C), 894.91 (C-N, bend), 559.32 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 2.515 (s, 1H, NH), 1.253-1.277 (t, 4H, 2 x CH₂), 3.735-3.833 (t, 4H, 2 x CH₂), 3.833(s, 3H, OCH₃), 4.253 (s, 2H, CH₂), 6.772 - 7.258 (m, 9H, Ar-H).

Synthesis of 6bromo-3-(6-(2,4-dichlorophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₉M): This was obtained from reacting BT₉ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3400.27 (N-H stretch), 1608.52 (C=O), 1614.31 (C=N stretch), 1556.45 (C=C); ¹HNMR (CDCl₃-d, δ , ppm): 2.496 (s, 1H, NH), 1.125-2.496 (t, 4H, 2 x CH₂), 3.707-3.908 (t, 4H, 2 x CH₂), 4.283 (s, 2H, CH₂), 6.283 - 7.633 (m, 8H, Ar-H); MS m/z: 338, 301.0, 196.11, 100.2 (100 %); elemental analysis (C₂₄H₂₀N₄O₃Br₂), found % (calculated %): C, 50.39 (50.37); N, 9.77 (9.79).

Synthesis of 6-bromo-3-(6-(2,6-dichlorophenyl)-2-(morpholinomethylamino)pyrimidin-4-yl)-2H-chromen-2-one (BT₁₀M): This was obtained from reacting BT₁₀ with morpholine and formaldehyde. IR (KBr, cm⁻¹): 3421.48 (N-H stretch),1608.52 (C=O),1356.08 (C=N stretch),754.88 (C-N, bend); ¹HNMR (CDCl₃-d, δ , ppm): 2.80 (s, 1H, NH), 1.117-2.643 (t, 4H, 2 x CH₂), 3.323 - 3.838 (t, 4H, 2 x CH₂), 5.290 (s, 2H, CH₂), 6.910-7.645 (m, 8H, Ar-H).

Synthesis of compounds (BT₁P-BT₁₀P):

A mixture of compound BT_1-BT_{10} (0.01 mol), piperidine (0.01 mol) and formaldehyde (0.02) was refluxed in ethanol for 6 - 10 h. The reaction mixture was reduced to half of its volume and poured onto crushed ice. The product so obtained was washed with water repeatedly, dried, and recrystallized from ethanol. The formation of compounds ($BT_1P-BT_{10}P$) can be explained on the basis of "Mannich reaction".

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(2-chlorophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₁P): This was obtained from reacting BT₁ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3440.77 (N-H stretch), 1608.10 (C=O), 1608.52 and 1384.79 (C=N stretch), 1550.66 (C=C), 1137.92 (C-O-C), 894.91 (C-N, bend), 559.32 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 3.640 (s, 1H, NH), 1.213 - 2.390 (m, 10H, 5 x CH₂), 4.254 (s, 2H, CH₂), 6.406 - 7.635 (m, 9H, Ar-H); MS m/z: 526.3, 301.0, 285.0, 281.0 (100 %), 267.1, 208.2,163.0; elemental analysis (C₂₅H₂₂N₄O₂Cl Br), found % (calculated %): C, 57.09 (57.10); N, 10.64 (10.65).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(3-chlorophenyl)pyrimidin-4-yl)-6-bromo-2H- chromen -2-one (BT₂P): This was obtained from reacting BT₂ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3458.20 (N-H stretch), 1637.45 (C=O), 1612.52 and 1384.79 (C=N stretch), 1581.52 (C=C), 1155.28 (C-O-C), 823.55 (C-N, bend); ¹HNMR (CDCl₃-d, δ , ppm): 3.42(s, 1H, NH), 1.43 - 2.54 (m, 10H, 5 x CH₂), 4.45 (s, 2H, CH₂), 6.53 - 7.82 (m, 9H, Ar-H).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(4-chlorophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₃P): This was obtained from reacting (BT₃) with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3421.48 (N-H stretch), 1596.95 (C=O), 1384.79 (C=N stretch), 1460.01 (C=C), 1232.43 (C-O-C); ¹HNMR (CDCl₃-d, δ, ppm): 3.62 (s, 1H, NH), 1.253 - 1.615 (m, 10H, 5 x CH₂), 4.25 (s, 2H, CH₂), 6.92 - 7.63 (m, 9H, Ar-H).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(2-bromophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₄P): This was obtained from reacting BT₄ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3440.77 (N-H stretch), 1608.10 (C=O), 1608.52 and 1384.79 (C=N stretch), 1550.66 (C=C), 1137.92 (C-O-C), 894.91 (C-N, bend), 559.32(C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 2.88 (s, 1H, NH), 1.007 - 2.389 (m, 10H, 5 x CH₂), 3.655 (s, 2H, CH₂), 6.904 - 7.509 (m, 9H, Ar-H); MS m/z: 570.9, 428.8, 275.0, 268.0, 258.9; elemental analysis (C₂₅H₂₂N₄O₂Br), found % (calculated %): C, 52.62 (52.65);N, 9.80 (9.82).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(3-bromophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₅P): This was obtained from reacting BT₅ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3427.27 (N-H stretch), 1670.24 (C=O), 1604.52 and 1384.79 (C=N stretch), 1550.66 (C=C), 1137.92 (C-O-C), 894.91(C-N, bend), 559.32 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 2.801 (s, 1H, NH), 1.17 - 2.76 (m, 10H, 5 x CH₂), 3.56 (s, 2H, CH₂), 6.75 - 7.58 (m, 9H, Ar-H)

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(4-bromophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₆P): This was obtained from reacting BT₆ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3398.34 (N-H stretch), 1685.67 (C=O), 1602.74 & 1384.79 (C=N stretch), 1226.64 (C-O-C),765.60 (C-N, bend); ¹HNMR (CDCl₃-d, δ , ppm): 3.599(s, 1H, NH), 1.25 - 2.83 (m, 10H, 5 x CH₂), 4.34 (s, 2H, CH₂), 6.77 - 7.01 (m, 9H, Ar-H).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(2-methoxyphenyl)pyrimidin-4-yl)-6-bromo -2H- chromen-2-one (BT₇P): This was obtained from reacting BT₇ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3411.84 (N-H stretch), 2866.02 (C-H stretch of O-CH₃), 1596.95 (C=O), 1155.28 (C-O-C), 833.19 (C-N, bend), 555.46 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 3.89 (s, 1H, NH), 1.25 - 2.38 (m, 10H, 5 x CH₂),4.38 (s, 2H, CH₂), 3.66 (s, 3H, CH₃) 6.53 - 7.82 (m, 9H, Ar-H); MS m/z: 521.0, 408.0, 267.1, 226.9 (100 %), 209.1; elemental analysis (C₂₆H₂₅N₄O₃Br), found % (calculated %): C, 59.87 (59.89); N, 10.77 (10.75).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(3-methoxyphenyl)pyrimidin-4-yl)- 6bromo-2H-chromen-2-one (BT₈P): This was obtained from reacting BT₈ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3442.70 (N-H stretch), 2871.81 (C-H stretch of O-CH₃), 1610.45 (C=O), 1265.22 (C-O-C), 754.12 (C-N, bend), 611.39 (C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 3.67(s, 1H, NH), 1.18 - 2.88 (m, 10H, 5 x CH₂), 4.54 (s, 2H, CH₂), 3.36 (s, 3H, OCH₃), 6.53 - 7.82 (m, 9H, Ar-H).

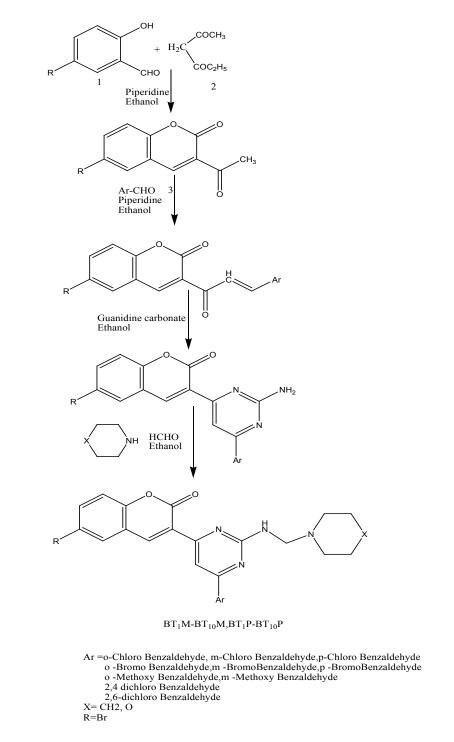
Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(2,4-dichlorophenyl)pyrimidin-4-yl)-6-bromo-2H-chromen-2-one (BT₉P): This was obtained from reacting BT₉ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3413.77 (N-H stretch), 1647.10 (C=O), 1591.16 (C=N stretch), 1577.60 (C=C), 1180.35 (C-O-C), 885.98 (C-N, bend), 663.47 (C-Cl), 586.32(C-Br); ¹HNMR (CDCl₃-d, δ , ppm): 3.808 (s, 1H, NH), 1.11 - 2.77 (m, 10H, 5 x CH₂), 4.68 (s, 2H, CH₂), 6.90 - 7.82 (m, 8H, Ar-H).

Synthesis of 3-(2-((piperidin-1-yl)methylamino)-6-(2,6-dichlorophenyl) pyrimidin-4-yl)-6bromo -2H-chromen-2-one (BT₁₀P): This was obtained from reacting BT₁₀ with piperidine and formaldehyde. IR (KBr, cm⁻¹): 3421.48 (N-H stretch), 1608.52 (C=O), 1384.79 (C=N stretch); ¹HNMR (CDCl₃-d, δ , ppm): 3.94 (s, 1H, NH), 1.3 - 2.77 (m, 10H, 5 x CH₂), 4.01 (s, 2H, CH₂), 6.54 - 7.58 (m, 8H, Ar-H); MS m/z: 558.0, 510.9, 326.1 (100 %), 208.1, 149.1; elemental analysis (C₂₅H₂₁N₄O₂Cl₂Br), found % (calculated %): C, 53.57 (53.59); N, 9.99 (10.00).

Pharmacological screening

Swiss albino rats were used for studying *in-vivo* anti-inflammatory activity. Animals were maintained under standard laboratory conditions $(24 \pm 2 \,^{\circ}C)$; relative humidity 60 - 70 %). The animals were kept in polypropylene cages and maintained on balanced rations with free access to clean drinking water. All experimental procedures were conducted in accordance with the guide for care and use of laboratory animals and in accordance with the local animal care and use committee.

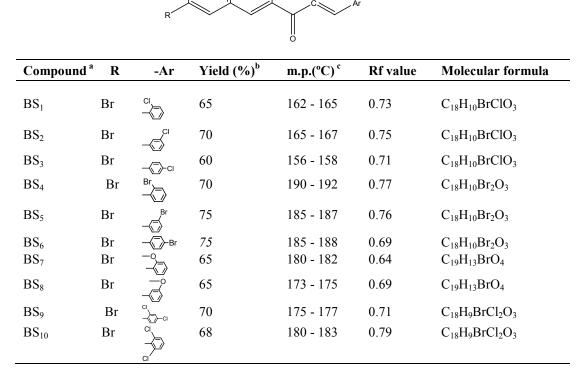
Anti-inflammatory activity


The activity of synthesized compounds was assessed using carrageenan-induced rat paw edema; briefly, rats were divided into 6 groups. Thirty minutes after oral administration of synthesized compound (50 mg/kg), 0.1 mL of 1 % carrageenan solution was injected, sub-plantar, to the left hind paw of each animal. Paw volumes were measured using standard fluid displacement procedures (a digital plethysmometer) by dipping the hind left paw in saline solution at 0.0, 0.5, 1, 2, 3, 4, and 6 h after the carragenan injection. The percentage change in paw volume relative to the base line measurement was taken as the criteria of comparison. Diclofenac sodium (50 mg/kg) was used as a standard anti-inflammatory agent.

Statistical analysis

Statistical analysis was performed by one-way analysis of variance (ANOVA) followed by Dunnett's t-test for multiple comparisons of all compounds in various pharmacological assays. Data are expressed as mean \pm SEM.

Results and discussion


From these data, a preliminary SAR can be drawn for synthesized compounds. A novel series of compounds ($BT_1M-BT_{10}M$ and $BT_1P-BT_{10}P$) were synthesized and characterized. The synthesized compounds were screened for their *in-vivo* anti-inflammatory activity according to the paw edema method, using Swiss albino rats. All the compounds at doses, of 50 mg/kg each, exhibited significant anti-inflammatory activity in acute inflammatory models in the rats. Some of the synthesized compounds, viz., BT_8M , BT_4P , BT_5P , and BT_7P , exhibited significant anti-inflammatory activity, and compounds BT_3M , BT_9M , $BT_{10}M$, BT_9P , and $BT_{10}P$ showed highly significant activity. The remaining compounds showed less anti-inflammatory activity. The percentage change in paw volumes at 0, 0.5, 1, 2, 3, 4, and 6 h after drug administration were calculated. The most potent effects were produced by derivatives of $BT_{10}M$. Conversely, the weakest activity in this test was displayed by BT_1M , BT_2M , BT_5M , and BT_7M . The data for the compounds tested for anti-inflammatory activity are presented in **Table 5** and **Figure 1**. From the data presented, it follows that the most active substance in the carrageenan-induced rat paw edema method was [6-Bromo-3-(6-(2, 6-dichlorophenyl)-2(morpholinomethylamino) pyrimidin-4-yl)-2H-chromen-2-one] ($BT_{10}M$).

Scheme 1 Schematic diagrams for the synthesis of pyrimidine derivatives (BT₁M-BT₁₀M, BT₁P-BT₁₀P).

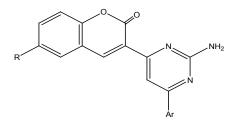
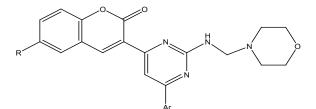

Walailak J Sci & Tech 2016; 13(10)

Table 1 Physical parameters of compounds (BS₁-BS₁₀).

^aProducts were characterized by IR, NMR. ^bsynthesized yields. ^cm.p. are uncorrected.

Table 2 Physical parameters of compounds (BT₁-BT₁₀).



Compound ^a	R	-Ar	Yield (%) ^b	m.p.(°C) ^c	Rf value	Molecular formula
BT ₁	Br		65	162 - 165	0.62	$C_{19}H_{11}BrClN_3O_2$
BT ₂	Br		60	165 - 167	0.74	$C_{19}H_{11}BrClN_3O_2$
BT ₃	Br	-√->-cı	70	156 - 158	0.70	$C_{19}H_{11}BrClN_3O_2$
BT_4	Br	Br	65	190 - 192	0.75	$C_{19}H_{11}Br_2N_3O_2$

Walailak J Sci & Tech 2016; 13(10)

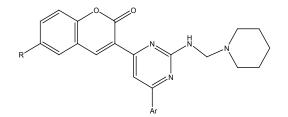

Compound ^a	R	-Ar	Yield (%) ^b	m.p.(°C) ^c	Rf value	Molecular formula
BT ₅	Br	Br	50	185 - 187	0.72	$C_{19}H_{11}Br_2N_3O_2$
BT_6	Br	Br	60	185 - 188	0.68	$C_{19}H_{11}Br_2N_3O_2$
BT ₇	Br	$\stackrel{\circ}{\prec}$	65	177 - 179	0.67	$C_{20}H_{14}BrN_3O_3$
BT ₈	Br	-	65	173 - 175	0.65	$C_{20}H_{14}BrN_3O_3$
BT ₉	Br		70	175 - 177	0.78	$C_{19}H_{10}BrCl_2N_3O_2$
BT ₁₀	Br		68	180 - 183	0.70	$C_{19}H_{10}BrCl_2N_3O_2$

Table 3 Physical parameters of compounds (BT₁M-BT₁₀M).

Compoun	d ^a R	-Ar	Yield (%) ^b	m.p.(°C) °	Rf value	Molecular formula
BT_1M	Br		55.4	176 - 178	0.76	$C_{24}H_{20}BrClN_4O_3$
BT_2M	Br		60.9	175 - 177	0.74	$C_{24}H_{20}BrClN_4O_3$
BT ₃ M	Br		60.7	177 - 179	0.66	$C_{24}H_{20}BrClN_4O_3$
BT_4M	Br	Br	65.1	180 - 182	0.73	$C_{24}H_{20}Br_2N_4O_3$
BT ₅ M	Br	Br	50.9	175 - 178	0.72	$C_{24}H_{20}Br_2N_4O_3\\$
BT ₆ M	Br	- Br	60.5	178 - 180	0.68	$C_{24}H_{20}Br_2N_4O_3\\$
BT ₇ M	Br		65.3	177 - 179	0.67	$C_{25}H_{23}BrN_4O_4$
BT_8M	Br		65.5	173 - 175	0.65	$C_{25}H_{23}BrN_4O_4$
BT ₉ M	Br		60.3	175 - 177	0.71	$C_{24}H_{19}BrCl_2N_4O_3$
$BT_{10}M$	Br		55.1	171 - 173	0.66	$C_{24}H_{19}BrCl_2N_4O_3$

Table 4 Physical parameters of compounds (BT₁P-BT₁₀P).

Compou	nd ^a R	-Ar	Yield (%) ^b	m.p.(°C) °	Rf value	Molecular formula
BT ₁ P	Br		50.4	168 - 170	0.72	$C_{25}H_{22}BrClN_4O_2$
BT_2P	Br		60.7	170 - 172	0.73	$C_{25}H_{22}BrClN_4O_2$
BT ₃ P	Br		60.5	176 - 178	0.66	$C_{25}H_{22}BrClN_4O_2$
BT_4P	Br	Br	65.3	172 - 174	0.73	$C_{25}H_{22}Br_2N_4O_2$
BT ₅ P	Br	Br	50.7	175 - 178	0.72	$C_{25}H_{22}Br_2N_4O_2$
BT ₆ P	Br	Br	60.5	178 - 180	0.68	$C_{25}H_{22}Br_2N_4O_2$
BT ₇ P	Br	$\stackrel{\circ}{\prec}$	65.3	177 - 179	0.67	$C_{26}H_{25}BrN_4O_3$
BT ₈ P	Br	-	65.8	173 - 175	0.65	$\mathrm{C}_{26}\mathrm{H}_{25}\mathrm{BrN}_{4}\mathrm{O}_{3}$
BT ₉ P	Br		60.9	169 - 171	0.71	$C_{25}H_{21}BrCl_2N_4O_2$
BT ₁₀ P	Br		55.6	187 - 189	0.66	$C_{25}H_{21}BrCl_2N_4O_2$

^aProducts were characterized by IR, NMR, ^bsynthesized yields. ^cm.p. were uncorrected.

Table 5 Anti-inflammatory activity of compounds $(BT_1M-BT_{10}M \text{ and } BT_1P-BT_{10}P)$ by carrageenan-induced paw edema model.

		1.00 hrs 2.33±0.09***	2.00 hrs 2.18±0.08	3.00 hrs	4.00 hrs	6.00 hrs
		2.33±0.09***	2.18±0.08	1 70+0 08	1 11 0 0 7 *	
65±0.14	222 ± 0.04			1.70±0.08	1.41±0.07*	1.33±0.51*
	5.55±0.04	3.38 ± 0.048	3.44±0.03	3.57±0.021	3.61±0.026	3.47 ± 0.33
19±0.06	2.97±0.30	2.75±0.024***	2.49±0.024***	2.52±0.076***	2.45±0.11**	1.95±0.17*
28±0.10	$3.01 \pm 0.05*$	2.87±0.027***	2.73±0.023***	2.65±0.024***	2.46±0.023*	2.08±0.27***
23±0.06	3.03±0.05*	2.87±0.029***	2.74±0.015***	2.58±0.027***	2.39±0.026***	1.58±0.043**
22±0.04	2.95±0.02	2.78±0.014***	2.66±0.019***	2.58±0.027***	2.41±0.039*	1.59±0.67*
13±0.03	2.94±0.007	2.75±0.017***	2.56±0.027***	2.53±0.081***	2.23±0.12***	2.03±0.18***
14±0.02	2.95±0.017	2.73±0.012***	2.57±0.019***	2.43±0.156***	2.32±0.10***	1.92 ±0.71
52±0.10	3.25±0.07***	3.00±0.043***	2.8±0.04***	2.63±0.038***	2.47±0.075***	1.98±0.26**
22	28±0.10 23±0.06 22±0.04 13±0.03 14±0.02	28 ± 0.10 $3.01\pm0.05^*$ 23 ± 0.06 $3.03\pm0.05^*$ 22 ± 0.04 2.95 ± 0.02 13 ± 0.03 2.94 ± 0.007 14 ± 0.02 2.95 ± 0.017	28 ± 0.10 $3.01\pm0.05^*$ $2.87\pm0.027^{***}$ 23 ± 0.06 $3.03\pm0.05^*$ $2.87\pm0.029^{***}$ 22 ± 0.04 2.95 ± 0.02 $2.78\pm0.014^{***}$ 13 ± 0.03 2.94 ± 0.007 $2.75\pm0.017^{***}$ 14 ± 0.02 2.95 ± 0.017 $2.73\pm0.012^{***}$	28 ± 0.10 $3.01\pm0.05^*$ $2.87\pm0.027^{***}$ $2.73\pm0.023^{***}$ 23 ± 0.06 $3.03\pm0.05^*$ $2.87\pm0.029^{***}$ $2.74\pm0.015^{***}$ 22 ± 0.04 2.95 ± 0.02 $2.78\pm0.014^{***}$ $2.66\pm0.019^{***}$ 13 ± 0.03 2.94 ± 0.007 $2.75\pm0.017^{***}$ $2.56\pm0.027^{***}$ 14 ± 0.02 2.95 ± 0.017 $2.73\pm0.012^{***}$ $2.57\pm0.019^{***}$	28 ± 0.10 $3.01\pm0.05^*$ $2.87\pm0.027^{***}$ $2.73\pm0.023^{***}$ $2.65\pm0.024^{***}$ 23 ± 0.06 $3.03\pm0.05^*$ $2.87\pm0.029^{***}$ $2.74\pm0.015^{***}$ $2.58\pm0.027^{***}$ 22 ± 0.04 2.95 ± 0.02 $2.78\pm0.014^{***}$ $2.66\pm0.019^{***}$ $2.58\pm0.027^{***}$ 13 ± 0.03 2.94 ± 0.007 $2.75\pm0.017^{***}$ $2.56\pm0.027^{***}$ $2.53\pm0.081^{***}$ 14 ± 0.02 2.95 ± 0.017 $2.73\pm0.012^{***}$ $2.57\pm0.019^{***}$ $2.43\pm0.156^{***}$	28 ± 0.10 $3.01\pm0.05^*$ $2.87\pm0.027^{***}$ $2.73\pm0.023^{***}$ $2.65\pm0.024^{***}$ $2.46\pm0.023^*$ 23 ± 0.06 $3.03\pm0.05^*$ $2.87\pm0.029^{***}$ $2.74\pm0.015^{***}$ $2.58\pm0.027^{***}$ $2.39\pm0.026^{***}$ 22 ± 0.04 2.95 ± 0.02 $2.78\pm0.014^{***}$ $2.66\pm0.019^{***}$ $2.58\pm0.027^{***}$ $2.41\pm0.039^*$ 13 ± 0.03 2.94 ± 0.007 $2.75\pm0.017^{***}$ $2.56\pm0.027^{***}$ $2.53\pm0.081^{***}$ $2.23\pm0.12^{***}$ 14 ± 0.02 2.95 ± 0.017 $2.73\pm0.012^{***}$ $2.57\pm0.019^{***}$ $2.43\pm0.156^{***}$ $2.32\pm0.10^{***}$

Walailak J Sci & Tech 2016; 13(10)

799

	Anti- inflammatory activity by carrageenan-induced rat paw edema model (mean±SEM)									
Compound	0.00 hrs	0.5 hrs	1.00 hrs	2.00 hrs	3.00 hrs	4.00 hrs	6.00 hrs			
BT ₈ M	3.14 ± 0.04	2.93±0.02	2.72±0.016***	2.54±0.012***	2.51±0.10***	2.13±0.036***	1.74±0.06**			
BT ₉ M	3.58±0.05	2.96 ± 0.007	2.75±0.019***	2.54±0.012***	2.41±0.031***	2.04±0.051***	1.66 ± 0.55			
$BT_{10}M$	$3.39{\pm}0.07$	$2.96{\pm}0.008$	2.74±0.019***	2.51±0.09***	2.50±0.080***	2.08±0.023***	1.39±0.09***			
BT_1P	3.46±0.096	2.95±0.014*	2.74±0.011***	2.61±0.009***	2.42±0.013***	2.23±0.057***	1.89±0.09***			
BT ₂ P	3.2±0.030	2.92±0.013*	2.69±0.014***	2.59±0.017***	2.41±0.019***	2.17±0.066***	1.90 ± 0.88			
BT ₃ P	3.16±0.035	2.95±0.010*	2.71±0.009***	2.35±0.006***	2.34±0.012***	1.97±0.062***	1.93±0.55***			
BT_4P	3.09±0.018*	2.96±0.009*	2.75±0.008***	2.56±0.023***	2.34±0.015***	1.99±0.038***	1.75±0.32			
BT ₅ P	3.28±0.051	$2.94{\pm}0.009$	2.72±0.013***	2.52±0.007***	2.38±0.020***	2.21±0.018***	1.88 ± 0.31			
BT ₆ P	3.42±0.039	2.95±0.008*	2.73±0.011***	2.64±0.013***	2.43±0.012***	2.25±0.021***	1.90±0.55***			
BT ₇ P	3.1±0.026	$2.94{\pm}0.007$	2.75±0.009***	2.61±0.05***	2.46±0.08***	2.16±0.029***	1.78 ± 0.09			
BT ₈ P	3.39±0.063	$2.92{\pm}0.006$	2.72±0.022***	2.47±0.023***	2.31±0.009***	2.05±0.045***	1.77±0.08***			
BT ₉ P	3.16±0.027	2.92 ± 0.027	2.72±0.027***	2.44±0.027***	2.24±0.027***	1.95±0.027***	1.65±0.22*			
$BT_{10}P$	3.13±0.035	2.94±0.006*	2.69±0.011***	2.5±0.029***	2.28±0.057***	2.04±0.052***	1.54 ±0.13			

Anti- inflammatory activity by carrageenan-induced rat paw edema model (mean±SEM)

Corresponding compounds were compared to control p < 0.05, p < 0.01, p < 0.01, p < 0.01

Table 6 Anti-inflammatory activity of compounds $(BT_1M-BT_{10}M \text{ and } BT_1P-BT_{10}P)$ by carrageenan-induced paw edema model.

Percent inhibition against carrageenan-induced rat paw edema model									
Compound	0.00 hrs	0.5 hrs	1.00 hrs	2.00 hrs	3.00 hrs	4.00 hrs	6.00 hrs		
Standard	7.12±3.97	18.19±4.52	31.08±2.82	36.72±2.49	52.40±1.92	60.98±1.98	61.67±1.28		
BT_1M	12.37±1.55	10.99±0.91*	18.86±0.79**	27.66±0.69***	28.62±2.12	32.19±3.09	43.80±2.66		
BT_2M	9.67±2.82	9.64±1.36	15.3±0.79**	20.78±0.67***	25.96±0.66**	32.01±0.60***	$40.05 \pm 0.87^{***}$		
BT_3M	11.55±1.66	9.15±1.53	15.27±0.86	20.34±0.41**	27.78±0.73**	33.85±0.73***	54.46±0.54***		
BT_4M	11.78±1.02	11.49±0.46	17.88±0.39*	22.67±0.58**	27.87±0.75**	33.48±1.23***	54.7±1.12***		
BT ₅ M	14.33±0.68	11.85±0.24	18.71±0.49	25.53±0.78**	29.23±2.28	38.41±3.33	41.40±3.09		
BT ₆ M	13.88±0.43	11.64±0.51*	19.4±0.36*	25.38±0.58	31.93±0.43***	35.97±3.46	44.66±3.21		
BT ₇ M	3.65±2.79	3.33 ± 2.08	11.23±1.27	18.65±1.29	26.38±1.16***	31.78±2.07***	42.93±1.99***		
BT_8M	14.1±0.97	12.15±0.61*	19.75±0.49*	26.16±0.34*	29.41±2.88	41.13±3.18	49.89±3.00*		
BT ₉ M	6.19±1.43	11.25±0.22*	18.86±0.56**	26.3±0.35*	32.58±0.87**	43.52±1.40***	52.16±1.2**		
$BT_{10}M$	7.08±2.04	11.29±0.26	19.06±0.57**	26.88±0.25*	29.97±2.24	42.65±0.64***	59.94±0.54***		
BT_1P	5.21±2.62	11.49±0.42	19.01±0.33*	24.13±0.64**	32.31±1.57***	38.37±2.62	45.53±2.51		
$BT_2 P$	12.33±0.68	12.39±0.41	20.49±0.73	24.71±0.32*	32.59±1.19***	40.03±0.68**	45.24±0.66***		
BT ₃ P	13.42±0.88	11.49±0.33	19.9±0.26*	31.63±0.17*	34.55±1.71	45.56±0.88***	44.38±0.56***		
$BT_4 P$	9.34±0.71	11.19±0.28*	18.72±0.46	25.58±0.67	34.55±1.20***	45.02±0.72	49.56±0.79***		

Percent inhibition against carrageenan-induced rat paw edema model									
Compound	0.00 hrs	0.5 hrs	1.00 hrs	2.00 hrs	3.00 hrs	4.00 hrs	6.00 hrs		
BT ₅ P	10.14±1.39	11.79±0.28*	19.6±0.38	26.74±0.22**	33.43±0.51*	38.92±1.39*	45.82±1.33**		
$BT_6 P$	6.3±1.09	11.49±0.26	19.31±0.34	23.26±0.49**	32.03±0.59*	37.82±1.09***	45.24±1.02**		
$BT_7 P$	15.07±0.70	11.79±0.65**	18.72±0.28	24.13±1.44	31.19±0.80**	40.3±0.70**	48.70±0.59***		
$BT_8 P$	7.12±1.73	12.39±0.29*	19.60±0.56	28.19±0.67	35.39±1.24***	43.34±1.73*	48.99±1.66**		
BT ₉ P	13.42±0.87	12.39±0.63	19.60±0.53	29.07±0.36	37.34±1.18***	46.11±1.18***	52.44±1.11**		
$BT_{10} P$	14.25±0.96	11.79±0.86	20.49±0.57	27.33±0.59	36.22±0.72*	43.62±0.96*	55.61±1.00**		

Corresponding compounds were compared to control p < 0.05, p < 0.01, p < 0.01

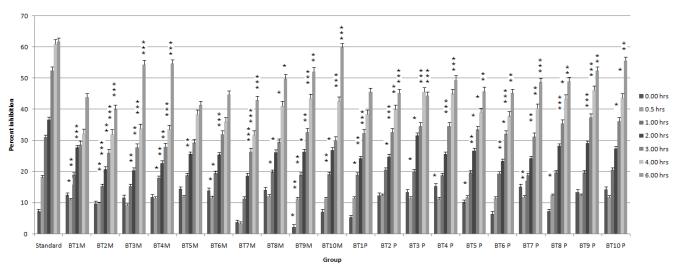


Figure 1 Anti-inflammatory activity of synthesized compounds ($BT_1M-BT_{10}M$, $BT_1P-BT_{10}P$).

Conclusions

A new series of compounds (BT1M-BT10M and BT1P-BT10P), i.e., pyrimidine analogues, were synthesized by piperidine and morpholine and characterized by modern analytical techniques. The synthesized compounds were screened for their in-vivo anti-inflammatory activity. Some of the synthesized compounds, viz. BT1M, BT3M, BT8M, BT2P, BT3P, BT5P, and BT7P exhibited significant anti-inflammatory activity, and compounds BT₉M, BT₁₀M, BT₁P, and BT₉P showed highly significant anti-inflammatory activity. The remaining compounds showed less anti-inflammatory and analgesic activity comparable to that of standard drug diclofenac sodium.

Acknowledgements

The authors are thankful to CDRI, Lucknow, India, for providing spectral data, and VIMS, Dadri, India, for providing all of the facilities used to carry out the present work.

References

- [1] R Dudhe, PK Sharma and PK Verma. Discovery of substituted hydroxylphenyl pyrimidine-2(1H) thione as a new series of antioxidant using AAU and AAI method. *Walailak J. Sci. & Tech.* 2015; **12**, 439-51.
- [2] K Desai, R Patel and K Chikhalia. Design, synthesis and antimicrobial study of some pyrimidine derivatives. J. Ind. Chem. 2006; 45, 773-9.
- [3] L Ballell, RA Field, GAC Chung and RJ Young. New thiopyrazolo[3,4 d] pyrimidine derivatives as antimycobacterial agents. *Bioorg. Med. Chem. Lett.* 2007; **17**, 1736-45.
- [4] A Chaudhary, PK Sharma, P Verma, N Kumar and R Dudhe. Microwave assisted synthesis of novel pyrimidine derivatives and investigation of their analgesic and ulcerogenic activity. *Med. Chem. Res.* 2012, **21**, 3629-45.
- [5] JK Gupta, PK Sharma, A Chaudhary, PK Verma and R Dudhe. Analgesic study of novel pyrimidine derivatives linked with coumarin moiety. *Med. Chem. Res.* 2012; **21**, 1625-32.
- [6] N Ergenc, G Capan, NS Gunay, S Ozkirimli, M Gungor, S Ozbey and E Kendi. Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo- 4,5-imidazolidinedione derivatives. *Arch. Pharm. Med. Chem.* 1999; **332**, 343-47.
- [7] N Fujiwara, T Nakajima, Y Ueda, H Fujita and H Kawakami. Novel piperidinylpyrimidine derivatives as inhibitors of HIV-1 LTR activation. *Bio. Med. Chem.* 2008; **16**, 9804-14.
- [8] E Gursoy and NU Guzeldemirci. Synthesis and primary cytotoxicity evaluation of new imidazo [2, 1-b] thiazole derivatives. *Eur. J. Med. Chem.* 2007; **42**, 320-6.
- [9] KD Hargrave, FK Hess and JT Oliver. N-(4-substitutedthiazolyl) oxamic acid derivatives, new series of potent, orally active antiallergy agents. J. Med. Chem. 1983; 26, 1158-63.
- [10] JK Gupta, PK Sharma, R Dudhe, A Chaudhary, SC Mondal and PK Verma. Synthesis and analgesic activity of novel Pyrimidine derivatives of Coumarin moiety. *Acta Poloniae Pharm. Drug Res.* 2011; 68, 785-93.
- [11] J Rudolph, H Theis, R Hanke, R Endermann, L Johannsen and FU Geschke. Seco-cyclothialidines: new concise synthesis, inhibitory activity toward bacterial and human DNA topoisomerases, and antibacterial properties. J. Med. Chem. 2001; 44, 619-26.
- [12] RN Sharma, FP Xavier, KK Vasu, SC Chaturvedi and SS Pancholi. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. *J. Enz. Inhib. Med. Chem.* 2009; **24**, 890-7.
- [13] K Tsuji and H Ishikawa. Synthesis and anti-pseudomonal activity of new 2-isocephems with a dihydroxypyridone moiety at C-7. *Bio. Med. Chem. Lett.* 1994; **4**, 1601-6.
- [14] IV Ukrainets, IA Tugaibei, NL Bereznykova, VN Karvechenko and AV Turov. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. *Chem. Heterocycl. Comp.* 2008; 5, 565-73.
- [15] E Wagner, K Al-Kadasi, M Zimecki and W Sawka-Dobrowolska. Synthesis and pharmacological screening of derivatives of isoxazolo[4,5-d]pyrimidine. *Eur. J. Med. Chem.* 2008; **43**, 677-82.