
  
http://wjst.wu.ac.th          Applied Mathematics 

Walailak J Sci & Tech 2018; 15(6): 421-437. 
 

Numerical Analysis of the One-Demential Wave Equation Subject to  
a Boundary Integral Specification 
 
Babak SOLTANALIZADEH1,*, Hamidreza ESMALIFALAK2,  
Rasoul HEKMATI3, Zahra SARMAST3 and Sepideh SHABANI4 
 
1Department of Mathematics, Prairie View A&M University, Prairie View, TX, USA 
2Department of Economics and Finance, University of Tasmania, Hobart, Australia 
3Department of Mathematics, University of Houston, Houston, TX, USA 
4Department of Management and Economics, Islamic Azad University, Tabriz, Iran 
 
(*Corresponding author’s e-mail: babak.soltanalizadeh@gmail.com) 
 
Received: 21 May 2014,   Revised: 10 August 2016,   Accepted: 15 September 2016 
 
 
Abstract 

In this paper a numerical technique is developed for the one-dimensional wave equation that 
combines classical and integral boundary conditions. A new matrix formulation technique with arbitrary 
polynomial bases is proposed for the analytical solution of this kind of partial differential equation. Not 
only have the exact solutions been achieved by the known forms of the series solutions, but also, for the 
finite terms of series, the corresponding numerical approximations have been computed. We give a simple 
and efficient algorithm based on an iterative process for numerical solution of the method. Some numerical 
examples are included to demonstrate the validity and applicability of the technique. 

Keywords: Wave equation, nonlocal boundary conditions, expansion methods, matrix formulation 
 
 
Introduction 

In 1981, Ortiz and Samara [1] proposed an operational technique for the numerical solution of 
nonlinear ordinary differential equations, with some supplementary conditions based on the Tau method 
[2]. The stability and convergence of the Tau approximations have been proved in [3]. During recent years, 
many authors have used this method for solving various types of equations. For example, in [4], this method 
has been used for linear ordinary differential eigenvalue problems, and, in [5,6], it has been used for partial 
differential equations and integral and integro-differential equations [7,8]. Abbasbandi, in [9], used this 
method for the system of nonlinear Volterra integro-differential equations. 

In 1963, nonlocal boundary equation were presented by Cannon [10] and Batten [11] independently. 
Then, parabolic initial-boundary problems with nonlocal integral conditions for parabolic equations were 
investigated by Kamynin [12] and Ionkin [13]. There are many physical phenomena that have been 
formulated in nonlocal form of PDEs. The development of numerical techniques for the solution of 
hyperbolic non-local boundary value problems has been an important research topic in many branches of 
science and engineering. Hyperbolic initial-boundary value problems in one dimension, which involve 
non-local boundary conditions, are studied by several authors. Beilin [14] investigated the non-local 
analogue to classical mixed problems, which involve initial, boundary integral conditions. Bouziani [15] 
studied the existence, uniqueness, and continuousness of a hyperbolic partial differential equation. The 
wave equation is an important second-order linear partial differential equation of waves, such as sound 
waves, light waves, and water waves. It arises in fields such as acoustics, electromagnetics, and fluid 
dynamics. 
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In this paper, a new matrix formulation is presented for the problem of obtaining numerical/analytical 
approximations to ( , )u x t which satisfies the wave equation; 

 
= ( , ),    0 < < , 0 <tt xxu u f x t x L t Tα− ≤                   (1) 

 
with the initial condition;  
 

( ,0) = ( ),   0 ,u x r x x L≤ ≤                     (2) 
  

,0   ),(=,0)( Lxxsxut ≤≤                     (3) 
 
and boundary condition;  
 

(0, ) = ( ),   0 < ,u t p t t T≤                     (4) 
 

,<0   ),(=),()(
0

Tttmdxtxuxk
L

≤∫                    (5) 

 
where the functions ( , ),f x t ( ), ( ), ( ), ( )r x s x k x p t , and ( )q t  and the constants ,α L , and T are 
known. The function ( , )f x t  is often called the source function because, in practice, it describes the 
effects of the sources of waves on the medium carrying them. Physical examples of source functions 
include the force driving a wave on a string, or the charge or current density in the Lorenz gauge of 
electromagnetism. 

Beilin proved the existence and uniqueness of a classical solution of (1) - (5) and found its Fourier 
representation [14]. In [16], Dehghan et al. presented several finite differential schemes for the numerical 
solution of (1) - (5). These 3 level techniques are based on 2 second-order schemes (one explicit and one 
weighted), and a fourth-order technique (a weighted explicit). Also, in [3], the shifted Legendre Tau 
method technique was developed for the solution of the studied model. In [17], variational iteration method 
was used for solving the studied model. The authors of [18] presented a numerical technique based on finite 
difference and spectral methods. Another method was presented in [19]. A new matrix formulation 
technique with arbitrary polynomial bases was proposed for the numerical/analytical solution of the heat 
equation with nonlocal boundary condition [20]. The authors of [21] presented a matrix formulation 
method based on shifted standard and shifted Chebyshev bases for solving a wave equation with a boundary 
integral condition. Similar problems can be found in [22-39]. 
 
Description of Matrix formulation 

In Eqs. (1) - (5), the functions ( , ), ( ), ( ), ( )f x t p x k x g t , and ( )m t generally are not polynomials. 
We assume that these functions are polynomial, or that they can be approximated by polynomials to any 
degree of accuracy. For this purpose, one may use one or 2 variate Taylor or Chebyshev series or other 
suitable methods. So, we can write: 
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Therefore, we consider the approximate solution of the form; 
 

,==),(
0=0=

UTXtxutxU Tji
ij

n

j

n

i
n ∑∑                    (8) 

 
where ],,...,,,[= 210 nUUUUU  with .],...,,,[= 210

T
niiiii uuuuU  The matrix U is an 

( 1) ( 1)n n+ × + matrix which contains 2( 1)n + unknown coefficients of ),( txUn . To find these 
unknowns, we proceed as follows. 
 
We first consider the initial condition; 

 
( ,0) = ( ),   0 .u x r x x L≤ ≤                        (9) 

 
then, with due attention to Eq. (6) and Eq. (8), we obtain; 
 

,=0 RXUX TT                     (10) 
 
which implies; 
 

0 = .U R                      (11)   
 
since X is a basis vector. From above equation, we can find the first column of U . 
 
Now, consider;  
 

.<0  ),(=)(0, Tttptu ≤                    (12) 
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Substituting Eqs. (6) and (8) in Eq. (10), we get; 
 

.=1 PTUTX T                     (13) 
 
where 1 = [1,0,0,...,0]X . Since T is a basis vector, we have;  
 

.=1 PUX T                     (14) 
 
Now, we consider the nonlocal boundary condition; 
 

).(=),()(
0

tmdxtxuxk
L

∫                                                              (15) 

 
We substitute from Eqs. (6) and (8) and obtain; 
 

 ,=))((
0=0=0=0=

0

j
j

n

j

ji
ij

n

j

n

i

h
h

n

h

L
tmdxtxuxk ∑∑∑∑∫                                            (16) 

hence;  
 

.<0      ),(=            

)(=

1
0=0=0=

0
0=0=0=0=

Ttvtuk

dxxtuktm

ih
j

ijh
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                (17) 

 
or equivalently; 
 

.= MTDUT                        (18) 
 
 
where  
 

0 1 2= [ , , ,..., ],nD d d d d                                                                  (19) 
 
 
with  
 

,0,1,2,...,=   ,= 1
0=

nivkd ihh

n

h
i ++∑                                                       (20) 

 
and  
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.0,1,2,...,=,   ,
1

=
1

1 nih
ih

Lv
ih

ih ++

++

++                                                      (21) 

 
The equivalent from (18) is; 
 

,= MDU                             (22) 
 
since T  is a basis vector. Now, we recall the following lemma from [4,8], to write Eq. (1) in the matrix 
form to determine remainder equations. This lemma is proved by induction.  
 
Lemma 1 The effect of r repeated differentiation on coefficients vector 

],...,,,[= 210 naaaaa  of a polynomial Xaxyn =)(  is the same as that of post-multiplication of a  

by the matrix rη ;  
 

( ) = ,
r

r
nr

d y x a X
dx

η                                                                    (23) 

  
where η is the ( 1) ( 1)n n+ × + operational matrix of derivation ; 
 
 

ɳ =

⎣
⎢
⎢
⎢
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0 0 0 0 … 0 0
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0
0
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0

0
2
0
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0

0
0
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0
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……
⋮
…

0
0
0
⋮
𝑛

0
0
0
⋮
0⎦
⎥
⎥
⎥
⎥
⎤

(𝑛+_1)(𝑛+1)

 

 
 
Corollary 1 By using lemma 1, we have; 

 
.=   ,=   ,)(= 22 TUXuTUXuUTXu T

tt
T

t
TT

xx ηηη                 (24) 
  

Now, consider; 
  

,0   ),(=,0)( Lxxsxut ≤≤                    (25) 
 
Applying Eqs. (6), (8) and (24), we obtain; 
 

(0) = ,   0 ,U T S x Lη ≤ ≤                    (26) 
 

where (0) = [1,0,0,...,0] .TT  Finally, consider; 
 

.<0 ,<<0    ),,(= TtLxtxfuu xxtt ≤−α                  (27) 
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Therefore, substituting from Eqs. (6), (8) and (24) in Eq. (24) leads to; 
 

,=)( 22 FTXUTXTUX TTTT ηαη −  
 
or  
 

.=)( 22 FUU Tηαη −                   (28) 
 
since X and T are basis vectors.  
 
 
Determining final linear equations 

In this section, we arrange the linear equations obtained in the previous section to have a system of 
( 1)( 1)n n+ +  equations for the ( 1)( 1)n n+ +  unknowns. We find ( 1)n +  equations from Eq. (8). 
Note that, since the Eq. (1) and boundary conditions (4) and (5) are not defined for [0,1]x∈  and 

[0, ],t T∈  we choose n  equations from Eq. (14), n  equations from Eq. (17), n  equations from Eq. 
(18), and ( 2)n n − equations from Eq. (28). 
 
By Eq. (9), we have; 
 

,0,1,2,...,=  ,=,0)( niriU i                    (29) 
 

and from Eq. (26), we have;  
 

,1,2,...,=  ,=)(0, njpjU j                    (30) 
 

and from Eq. (14), we get;  
 

,1,2,...,=  ,=,1)( nisiU i                    (31) 
 

from Eq. (22), we get; 
 

=0
( , ) = ,  = 1,2,..., .

n

i j
i

d U i j m j n∑                   (32) 

 
Finally, for = 1,2,...,j n  By Eq. (20), we have; 
 













−
−

−

−

−++++−
−

)).1,((
)1)((

1=)1,(

2,1,...,=  

2)),2,(1)2)((2),((
)1)((

1=),(

jnf
jj

jnU

ni

jiUiijif
jj

jiU α

              (33) 
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The Eqs. (29) - (33) generate a system of ( 1)( 1)n n+ + equations. By solving this system of 
equations, the unknown coefficients of U  can be calculated. For solving this system, we introduce a 
simple interesting process. We know that the first column of U  by Eq. (29) and the first row of U  by Eq. 
(30) and the second column by Eq. (31) were obtained. In every step, we obtain one column of U  by an 
interesting process. For example, for finding the second column of U , we know that the value of (0,1)U
was calculated. Thus, from Eq. (33), the values of (2,1), (3,1),..., ( 1,1)U U U n − can be found. Now, if 
we utilize Eq. (32), then the value of ( ,1)U n will be found. Here, the 3rd column of U has been 
obtained. By a similar process, we obtain the remainder columns of U . Therefore, the corresponding 
algorithm can be introduced to under case: 

 
 
Algorithm 
 
step 1: Choose Nn∈  as the degree of approximate solution.  
step 2: Determine the vectors K , P , G , D  and M and the matrix F . 
step 3: Set .],...,,,[1,=,],...,,,[1,= 3232 TnTn ttttTxxxxX  

step 4: For = 0,1,2,..., ,i n  set .=,0)( iriU  

step 5: For = 1,2,..., ,j n  set .=)(0, jpjU   

step 6: For = 1,2,..., ,i n  set .=,1)( isiU  

step 7: For = 2,3,...,j n  

1).1,(
)1)((

1=)1,( −−
−

− jnf
jj

jnU  

      for i=1,2,3,...,n-2 { 

      1)).2,(1)2)((1),((
)1)((

1=),( −++++−
−

jiUiijif
jj

jiU α   

                   } 

)).,((1=),( 1

0=
jiUdm

d
jnU i

n

ij
n

∑ −
−  

step 8: Set .=),( UTXtxU T
n   

step 9: End 
 
 

Numerical examples 

In this section, we apply the process presented in this paper and solve 5 examples. These examples are 
chosen such that their exact solutions are known. The numerical computations have been done by the 
software Matlab. Let ),(),(=),( txutxutxe nn − ; we calculate the following norms of the error for 
different values of n .  
 

}.0  ,0  |,),({|max=),(= TtLxtxetxeE nn ≤≤≤≤∞∞ PP                (34) 
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Example 1 ([34])Consider the heat equation presented in Eqs. (1) - (5) with; 
 

),2)(6(20)22(2=),( 23235 ttxxxxxtxf −−+−−+  
 

1,=)(   ,=)(   0,=)( 532 xkxxxxsxr −−  
 

12
1)(=)(   0,=)( −

−
tttmtg  

 
= 1,   = 1,   = 1.L Tα  

 
The authors in [34] solved this example by 2 forms of MOL, and obtained the results of Table 1. 

 
 
Table 1 The norm ‖𝑢𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑀𝑂𝐿‖𝑥𝑖,∞in [34]. 
 

x MOL 1 MOL 2 
0.1 41.4589452381 10−×   82.27205158021 10−×   
0.2 42.7172977818 10−×   81.59301172808 10−×   
0.3 4

3.7488135133 10
−

×   82.98653940467 10−×   
0.4 44.3322433196 10−×   84.39071972114 10−×   
0.5 44.1659346493 10−×   85.996250296 10−×   
0.6 42.9994415140 10−×   87.65543484160 10−×   
0.7 55.996250296 10−×   89.44377208656 10−×   
0.8 43.3337581084 10−×   71.134464433505 10−×   
0.9 48.9980978039 10−×   71.326242955457 10−×   
1.0 31.66653416461 10−×  62.4346786631213 10−×   

 
 

Selecting = 2n  and using Eqs. (26) and (27), we get; 
 

(0,0) = 2,  (1,0) = 0,  (2,0) = 4,U U U  
 

(0,1) = 1,  (0, 2) = 8.U U  
 

Now, from Eq. (29) and then Eq. (28), we obtain; 
 

(1,1) = 0,  (2,1) = 4,U U  
 
and also  
 

(1, 2) = 0,  (2, 2) = 32,U U  
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then  
 

𝑈 = �
2 1 8
0 0 0
8 4 32

� 

  
and by using Eq. (7), we have; 
 

,324882=),( 22222 txtxxtttxU +++++  
 

which it is the exact solution of the problem.  
 
Example 2 Consider the Eqs. (1)-(5) with; 
 

1,=)(   ,=)(=)(   ,2)(=),( 22 xkxxsxrextxf t−  
 

0.5.=   1,==   ,
3

=)(   0,=)( TLetmtg
t

α  

 
Applying Eqs. (26) - (27), we obtain;  
 

(0, ) = 0,    = 1,2,..., ,U j j n  
 

(0,0) = 0,  (1,0) = 0,  (2,0) = 1,  (3,0) = ... = ( ,0) = 0,U U U U U n  
 
and then  
 

(1,1) = 0,  (2,1) = 1,  (3,1) = ... = ( 2,1) = 0,U U U U n −  
 

( 1,1) = 1( ( 1,1)) = 0,U n f n− −  
 

0.=)
3
1

3
11)((=,1)( −+nnU  

 
By continuing this process, we get; 
 

2
2( , ) = (1 ... ),

2! !

nt tu x t x t
n

+ + + +  

 
which is the Taylor expansion of the ,=),( 2 textxu  which is the exact solution of this example. The 
numerical results of this example are reported in Tables 2 and 3 and a plot of corresponding error function 
is shown in Figure 1.  
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Table 2 Absolute errors of the presented method for n = 15. 
 

 x   = 0.1t   = 0.3t          = 0.5t   

0  0 0                0 
0.1 183.469 10−×    181.735 10−×    183.469 10−×   
0.2 171.388 10−×    186.939 10−×    171.388 10−×   
0.3 174.163 10−×    171.388 10−×    175.551 10−×   
0.4 175.551 10−×    172.776 10−×    175.551 10−×   
0.5 161.110 10−×    175.551 10−×    161.110 10−×   
0.6 161.665 10−×    175.551 10−×    162.220 10−×   
0.7 162.220 10−×    161.110 10−×    162.220 10−×   
0.8 162.220 10−×    161.110 10−×    162.220 10−×   
0.9 163.331 10−×    162.220 10−×    164.441 10−×   
1.0 164.441 10−×    162.220 10−×    164.441 10−×   

 
  

Table 3 Maximum errors for x = 0 : 0.05 : 1.0, = 0 : 0.025 : 0.5t . 
 

   = 5n   = 10n          = 13n           = 15n  

 ∞E   52.335 10−×       111.276 10−×     151.110 10−×     166.661 10−×   
 

 

 
Figure 1 Plot of error function from Example 2. for n = 15. 
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Example 3 Consider the Eqs. (1)-(5) with;  
  

1,=)(   ,=)(   ,=)(   ,=),( )( xkexsexretxf xxtx+  
 

1,==   2,=   ,1)(=)(   ,=)( TLeetmetp tt α−  
 
using Eqs. (26) and (27), we get; 
 

,0,1,2,...,=  ,
!
1=,0)( ni
i

iU  

 

,1,2,...,=  ,
!

1=)(0, nj
j

jU  

 

,1,2,...,=  ,
!
1=,1)( ni
i

iU  

 
and from Eq. (29), we have; 
 

2,1,2,...,=  ,
!2!

1=,2)( −ni
i

iU  

  

2,1,2,...,=  ,
1)!(2!

1=1,2)( −
−

− ni
n

nU  

 
Then, by using Eq. (28) and the above numerical results, we get; 
 

1 1 1 1 1( , 2) = 1 1 ... ; .
2!2! 2!3! 2!4! 2!( 1)! 2! !

U n e
n n

− − − − − − −
−

 

 
By using this recursive scheme, the remainder values of ( , )U i j  are obtained. Now, by using Eq. 

(7), we get; 
 

...,
!!

1...
2!2!
1

2!
1

2!
1

!
1...

2!
1

!
1...

2!
11),(

22222

2

++++++++++++

++++

nnn

n

tx
nn

txtxxxt
n

xtxtx

t
n

tttxu ;
 

 
which is the Taylor expansion of the ,=),( txetxu +  which is the exact solution of this example. The 
numerical results of the absolute errors with 𝑛 = 5, 10, 15, 20 obtained by using our described method are 
given in Tables 4 and 5 and a plot of corresponding error function is shown in Figure 2. 
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Table 4 Absolute errors of the presented method n = 20. 
 

 x   = 0.1t   = 0.3t           = 0.5t   
0 164.441 10−×    162.220 10−×    164.441 10−×   

0.1 166.661 10−×    164.441 10−×    162.220 10−×   
0.2 166.661 10−×    162.220 10−×    164.441 10−×   
0.3 166.661 10−×    164.441 10−×    168.882 10−×   
0.4 168.882 10−×    164.441 10−×    168.882 10−×  
0.5 168.882 10−×    168.882 10−×    168.882 10−×   
0.6 168.882 10−×    164.441 10−×    168.882 10−×   
0.7 151.332 10−×    168.882 10−×    151.332 10−×   
0.8 151.332 10−×    168.882 10−×    151.332 10−×   
0.9 168.882 10−×    168.882 10−×    168.882 10−×   
1.0 151.776 10−×    151.332 10−×    151.776 10−×   

 
  

Table 5 Maximum errors for = 0 : 0.05 :1.0,x = 0 : 0.025 : 0.5t . 
 

   = 5n   = 10n           = 15n            = 20n   

 ∞E   31.767 10−×   82.858 10−×    132.256 10−×       152.220 10−×   
 
 

 
Figure 2 Plot of error function from Example 3. for n = 20. 
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Example 4 ([35, 36])Consider the Eqs. (1)-(5) with;  
  

( , ) = 0,   ( ) = 0,   ( ) = ( ),f x t r x s x cos xπ π  
( ) = 0,   ( ) = ( ),   = 1,   = 1,   = 0.5.p t m t sin t L Tπ α  

 
For this example, we solve the problem by applying the technique described in the preceding section 

and obtain the closed form of the solution as follows; 

...)
3!2!

(...)
3!2!

(),(
54

322
54

32 +−+−−+−+−−
ttttxttttxtxun ;  

 
which is the Taylor expansion of the ( , ) = ( ) ( ),u x t cos x sin tπ π  which is the exact solution of this 
example. The numerical results of the absolute errors with 𝑛 = 10, 20, 25, 26, 30 obtained by using our 
described method are given in Tables 6 - 8. and a plot of corresponding error function is shown in Figure 3.  
 
 
Table 6 Absolute errors of Tau and Finite difference methods for t = 0.5.  

 

x The Optimal explicit [36] minimum errors of [35] 
0.1 53.3 10−×   94.9 10−×   
0.2 53.0 10−×   93.2 10−×   
0.3 53.2 10−×   96.7 10−×   
0.4 53.1 10−×   81.1 10−×   
0.5 53.3 10−×   0  
0.6 53.4 10−×    81.1 10−×   
0.7 53.1 10−×    96.7 10−×   
0.8 53.2 10−×    93.2 10−×   
0.9  53.4 10−×    94.9 10−×   

 
 
Table 7 Absolute errors of the presented method for n = 30. 
 

 x   = 0.1t   = 0.3t           = 0.5t   
0 175.551 10−×         0          162.220 10−×   

0.1 175.551 10−×         0          161.110 10−×   
0.2 0 161.110 10−×    161.110 10−×   
0.3 172.776 10−×         0          161.110 10−×  
0.4 171.388 10−×   161.388 10−×    162.220 10−×   
0.5 175.567 10−×   172.525 10−×    165.459 10−×   
0.6 172.776 10−×   161.110 10−×    167.772 10−×   
0.7 178.327 10−×   175.551 10−×    165.551 10−×   
0.8 175.551 10−×   163.331 10−×    151.110 10−×   
0.9 175.551 10−×   163.331 10−×    155.107 10−×   
1.0 175.551 10−×   162.220 10−×    154.663 10−×   
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Table 8 Maximum errors for = 0 : 0.05 :1.0, x = 0 : 0.025 : 0.5t . 
  

   = 10n   = 20n          = 25n            = 26n   

 ∞E   32.449 10−×    117.840 10−×     131.324 10−×     156.217 10−×   
 
 

 
  

Figure 3 Plot of error function from Example 4. for n = 26. 
 

  
Example 5 ([35,36])Consider the Eqs. (1)-(5) with;  
 

( , ) = 0,   ( ) = ( ),   ( ) = 0,f x t r x cos x s xπ  
 

( ) = ( ),   ( ) = 0p t cos t m tπ  
 

= 1,   = 1,   = 0.25.L Tα  
 

For this example, we solve the problem by applying the technique described in the preceding section 
and obtain the closed form of the solution as follows; 
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which is the Taylor expansion of the ))),((()))(((
2
1=),( txcostxcostxu −++ ππ which is the exact 

solution of this example. The numerical results of the absolute errors with 𝑛 = 10, 20, 25. 26 obtained by 
using our described method are given in Table 9, and a plot of corresponding error function is shown in 
Figure 4. 
 
 
Table 9 Maximum errors for = 0 : 0.05 :1.0, x = 0 : 0.025 : 0.5t . 
 

   = 10n   = 20n            = 25n           = 26n   

 ∞E   31.829 10−×   117.565 10−×     146.417 10−×      152.887 10−×   
 
 

 
Figure 4 Plot of error function from Example 5. for n = 26. 
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Conclusions 

In this paper, we focus on the Wave equation with nonlocal boundary condition and present an 
operational matrix formulation to solve this equation. By using this method, numerical/analytical results 
are obtained by a simple iterative process. This method reduces the computational difficulties of the other 
methods and all the calculations can be made with a simple iterative process. Also, we can increase the 
accuracy of the series solution by increasing the number of terms in the series solution. Consequently, it is 
seen that this method can be an alternative way for the solution of partial differential equations that have 
no analytic solutions.  
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