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Abstract 

Biodiesel is an alternative fuel produced from a renewable source (biological). Biodiesel has 
properties similar to diesel, produced from fossil fuels, and this makes it a good substitute as fuel used in 
diesel engines. The experimental determination of various properties of biodiesel is costly, time 
consuming and also a tedious process. In order to reduce these problems, researchers have identified that 
the fatty acid composition of biodiesel determines its fuel properties. The percentage composition of the 
fatty acid content of each biodiesel plays a significant role, and it is the sole determinant of the fuel 
properties. Furthermore, artificial neural networks have been considered to be tools helpful in estimating 
these properties from the fatty acid composition of the fuel. In this study 4 properties (cetane number, 
flash point, kinematic viscosity, and density) have been modeled, using artificial neural network (ANN). 
These fuel properties were predicted using 5 fatty acids as input parameters. A 2-layer neural network 
was used with logsig and purelin in the hidden layers; the fatty acids considered as input parameters were; 
palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid. Both cetane number and flash point 
used 6 neurons in the hidden layers, and the network had a determining factor (R2) of 0.93488 and 0.9814 
respectively. The network of the kinematic viscosity used 7 neurons in the hidden layer, and had a 
determining factor (R2) of 0.83238, while the density network used 5 neurons and had a determining 
factor (R2) of 0.819. The results obtained from this study closely agree with previous studies. 
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Introduction 

The major sources of energy used in the world are from petrochemical sources, coal, natural gases, 
hydroelectricity and nuclear energy [1]. With the exception of hydroelectricity and nuclear energy, all 
other energy sources are finite. Few regions in the world have petroleum, but usage of petroleum fuel, 
which is a fossil-based fuel, is affected with the gradual depletion of petroleum reserve [2], increases in 
price, emission, and increase in global warming. Diesel fuel has significant and greater importance in the 
industrial, transportation and power generating sectors of the economy of developed and developing 
countries. The demand for diesel is rapidly increasing worldwide. Biodiesel has been considered as one of 
the alternative fuels to be used as a good replacement for diesel fuel in compression ignition engines for 
several reasons, among which is its production from a renewable source, such as vegetable oils and 
animal fats [3,4]. Some of the advantages of biodiesel usage in compression ignition engines, compared 
to petrodiesel, include; better lubricating property, higher flash point (which makes it safer), 
biodegradability, non toxicity, lower exhaust emission, and very low or no sulfur content [1,5]. 
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Biodiesel 
Biodiesel is monoalkyl esters of long chain fatty acids, derived from renewable feedstocks, such as 

vegetable oil or animal fats, for use in compression ignition engines [6]. In simple terms, it is the product 
gotten when vegetable oil or animal fat is chemically reacted with an alcohol to produce a new compound 
that is known as a fatty acid alkyl ester. It is diesel produced from a biological product. Biodiesel can be 
used alone or blended with a certain percentage of petrodiesel. It can also be used as a low carbon 
alternative to heating oil. Biodiesel is produced by a process known as transesterification. This is 
basically the conversion of feedstock that contains oil into methyl or ethyl esters. Biodiesel is mainly 
produced by the chemical reaction of 3 compounds, which are the triglyceride (oil) from the feedstock to 
be used, an alcohol, which can be methanol or ethanol, and a catalyst (acidic, alkaline or enzymic 
catalyst). In a transesterification or alcoholysis reaction, one mole of triglyceride reacts with 3 moles of 
alcohol (molar ratio of methanol to vegetable oil of 3:1) to form one mole of glycerol and 3 moles of the 
respective fatty acid alkyl esters [1,7]. 
 

Fuel properties 
The amount of fatty acids present in the molecules of the triglyceride, contained in the feedstocks 

used in producing biodiesel, determines the fuel properties of biodiesel. Chain length and the number of 
double bonds determine the physical characteristics of both fatty acids and triglycerides [1]. Hence, the 
fatty acid compositions in vegetables oils result in the properties of biodiesels, such as viscosity, flash 
point, high-heating values, etc. [8,9]. Various vegetable oils and animal fats have been used in the 
production of biodiesel with different fatty acid compositions, which have led to the variation in their fuel 
properties. Standards have been set by different countries regarding the fuel properties of biodiesel that 
must be met before it can be used as fuel. Some of these fuel properties are highlighted below. 
 

Cetane number (CN) 
The cetane number is widely used as a diesel fuel quality parameter, related to the ignition delay 

time and combustion quality. The shorter the ignition delay time, the higher the CN, and vice versa. CN 
affects a number of engine performance parameters, like combustion, stability, drivability, white smoke, 
noise, and emissions of carbon monoxide and hydrocarbon. It is well known that the CN of a biodiesel 
depends on the feedstock used for its production. The longer the fatty acid carbon chains, and the more 
saturated the molecules, the higher the CN [1,5,10]. High CNs were observed from esters of saturated 
fatty acids, such as palmitic (C16:0) and stearic (C18:0) acids, and low CNs have been associated with 
unsaturated components, such as the esters of linoleic (C18:2) and linolenic (C18:3) acids. Biodiesel has a 
higher CN than conventional diesel fuel, which results in higher combustion efficiency [6]. Standards 
have been established worldwide for CN determination, for example, ASTM D613 in the United States, 
and internationally, ISO 5165. 
 

Flash point (FP) 
The flash point of a fuel is the temperature at which it will ignite when exposed to a flame or spark. 

This temperature correlates with its volatility, which is an important fuel feature for an engine’s starting 
and warming. The combination of high viscosity and low volatility of a fuel causes bad cold engine start 
up, misfire, and ignition delay. In spite of the fact that the FPs of feedstocks are reduced through 
transesterification, they are still higher than those of diesel fuel, regardless of whether the biodiesel is 
from high-quality vegetable oils or from low-cost feedstocks. Since biodiesel has a higher FP than diesel, 
it is a safer fuel for transport purposes than diesel. 
 

Density 
The ASTM D941 test method can be used to measure the density of the biodiesel, diesel fuel and 

their blends. The densities of diesel fuels are slightly lower than those of biodiesels. The density of 
biodiesel using the ASTM D6751 standard usually varies between 0.86 and 0.90 g/cm3. In many studies, 
it was observed that the biodiesel’s density has not changed a lot, because the densities of methanol and 
oil are close to the density of the produced biodiesel [11]. 
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Kinematic viscosity (KV) 
Viscosity is an important property of any fuel, as it is an indication of the ability of a material to 

flow. Viscosity affects the atomization of a fuel upon injection into the combustion chamber, and thereby 
causes the formation of engine deposits. The higher the viscosity, the greater the tendency of the fuel to 
cause such problems [12]. The KV of biodiesel increases with chain length (number of carbon atoms), 
types of bonding, double bond configuration, and increasing degree of saturation [13]. ASTM D 445 
provides a test method for determining the KV and the calculation method to determine the dynamic 
viscosity [14]. 

 
Other fuel properties  
Several other biodiesel fuel properties are provided for in the standards, such as ASTM D6751, EN 

14214 etc. These properties include: heat of combustion, cold point, pour point, lubricity, acid value, 
oxidative stability, phosphorous content, total sulfur content, ester content, iodine value, ash content, 
water content etc. 
 

Methods of determining biodiesel fuel properties 
Artificial neural network method 
The ANN method involves the use of certain parameters of biodiesel, which have been previously 

known or obtained via experimental results, to predict future biodiesel properties. ANN is modeled to 
predict properties of biodiesel from one feedstock or blends of biodiesel in different proportions. A.S. 
Ramadhas et al. [15] successfully developed a multi layer feed forward ANN to predict the CN of 
biodiesel. ANN was employed to estimate the density of pure palm oil-based methyl ester biodiesel [16]. 
Kumar and Bansal examined 7 neural network (NN) architectures and 3 training algorithms, along with 
10 different sets of weight and biases, to predict 4 properties of diesel-biodiesel blends [17]. The 
properties predicted were flash point, fire point, density and viscosity. The results showed that the NN 
gave the best estimate for diesel-biodiesel blends. Kraipat used a statistical model and ANN to predict 
kinematic viscosity and CN of biodiesels from their fatty acid compositions [8]. It was concluded by 
Kraipat that the ANN model predicted the properties accurately, and were closer to the experimental 
results than the statistical model. 

Other methods include; 
• Experimental and analytical method; 
• Mathematical model; 
• Statistical method. 

 
Materials and methods 

Data collections 
The collected data include the Fatty Acid Methyl Ester (FAME) composition of biodiesels, or fatty 

acid composition of vegetable oil, and their corresponding fuel properties that are of interest to this work. 
It has been established that the fuel properties of biodiesel is not affected by the mode of preparation. 

 
Selection of data  
The fatty acid composition of oils (vegetable and animal oils) and fuel properties were obtained 

from experimental results, which satisfied established biodiesel standards as given by EN14214 and 
EN14213. The 5 predominant constituents of most biodiesels were selected for use. These were the 
palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) and linolenic (C18:3) acids. The chain 
lengths of carbon for all these acids were 18, except for palmitic acid, which was 16. Both the palmitic 
and stearic acids are saturated acids, while the other 3 were unsaturated acids; oleic is monounsaturated 
with a single bond, linoleic acid is di-unsaturated, i.e., with a double bond, and linolenic is tri-unsaturated, 
with a triple bond. The fatty acid composition of biodiesel has been reported by many researchers as the 
main determinant of biodiesel properties upon which this present work is be developed. Some feedstocks 
in the data gathered from the literature have fatty acids with less than 16 carbon chains and fatty acids 
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with more than 18 carbon chains. Table 1 shows the list of feedstocks whose fatty acid composition was 
modified for this present work. In order to consider these fatty acids, the percent values of all saturated 
acids with a carbon chain of less than 16 were added to the amount of palmitic acid (C16:0) present, 
while the saturated acids with a carbon chain of more than 18 were added to the stearic acid (C18:0). 
Also, acids with single bonds (a carbon chain of more than 18) were added to oleic acid (C18:1), those 
with double bonds were added to linoleic acid (C18:2), while those with triple bonds were added to 
linolenic acid (C18:3). Some feedstocks used in this work have been reported to have acids with a level of 
unsaturation above triple bond. They were also taken into consideration by adding those with 4 bonds to 
oleic acid (C18:1), those with 5 bonds added to linoleic acid (C18:2), and those with 6 bonds to linolenic 
acid (C18:3). 

 
The ANN model analysis  
Steps/training procedures 
• Fatty acid composition as the input and the fuel property as the target vector were written in a 

suitable format in the MATLAB workspace. 
• A feed forward back propagation network with 2 layers was created in the NN toolbar of 

MATLAB. This is because back propagation uses a gradient descent method, and it allowed the NN to 
train with higher degree of efficiency. 

• Trainlim and sigmod were chosen as the training and transfer functions, respectively. A sigmod 
transfer function can learn nonlinearity between inputs and target very fast and accurately. 

• The numbers of neurons for the hidden layer was selected based on the input parameters for each 
network trained. 

• The input and target vectors were introduced to the created network, and the weight initialized. 
• Training parameters, such as epoch, maximum failure, error goal etc. were adjusted. 
• The network was gradually trained. The process was completed when the defined error was 

reached.  
The optimum number of hidden layer neurons was selected and determined during the training and 

leaning process by trial and error. 
 

Properties to be modeled 
Input parameters 
For all the networks to be modeled, the input layer consisted of 5 vector elements, which were the 

palmitic acid, stearic acid, oleic acid, linoleic acid, and the linolenic acid, respectively. Except for the 
density network, in which 6 input parameters were used, the temperature in °C at which the density of the 
selected biodiesel was reported was used as the sixth parameter, apart from the other 5 parameters. 
 

Output parameters 
Kinematic viscosity  
Values of KV at different temperatures from numerous FAMEs have been reported; the values 

selected were those of KV at 40 °C, and found to be within the limit of the biodiesel standards of ASTM 
D6751 and EN 14214 (ASTM D445 or EN ISO 3104). The average and modified value of the FAME 
composition and corresponding KV at 40 °C is shown in Table 3. For this work, several networks with 
different transfer functions, such as logsig, tansig and purelin, were used, with variation in the network 
parameters, such as neuron, epoch, maximum failure, hidden layer etc, so as to determine the best 
network using the selected data. 
 

Cetane number 
A back propagation learning algorithm was used to train the network. Purelin transfer function was 

used in the output layer, and the output vector element was the predicted CN. At the start, twelve 
networks were trained using 5, 6, 7 and 8 neurons, with logsig, tansig and purelin used respectively with 
these neurons for accuracy comparison. The entire networks were trained for each selected number of 
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neurons with different network parameter values, such as maximum failure, epoch, gradient etc. The 
network considered to be the best was the one with the least network output error. 

 
Flash point 
The fatty acid composition of feedstocks was used as the input vector and the FP as the target 

vector. A feed forward back propagation network was designed to model the NN. Six-network models, 
with 4, 5 and 6 neurons, were used, with tansig and logsig transfer functions as the transfer function in the 
first layer for prediction accuracy. 
 

Density 
The fatty acid composition of feedstocks at the selected temperature was used as the input 

parameter, while the density of these feedstocks at that temperature was used as the target output. Only 
feedstocks whose densities fall within the density standards for biodiesel were considered. Several NN 
with different numbers of neurons were trained in order to determine which had the best prediction 
accuracy. During the training, trial and error means were employed in the selection of the training 
parameters, such as epoch, gradient, maximum failure, etc. Likewise, both logsig and Tansig transfer 
functions were compared with different numbers of neurons. 
 
Results and discussion 

General training result  
After several trainings with different transfer functions and variation of each set of training 

parameters, it was found that logsig as a transfer function yielded the best result for all networks trained 
for this study. Also, it was found that the same neurons did not give the best output for the various 
properties that were considered in this work. Though 4, 5, 6 and 7 neurons were considered for the 
density network, 5 neurons gave the best result. Neurons, ranging from 4 to 8 in number, were used in 
training both networks for flash point and cetane number, but it was found that 6 neurons gave the best 
acceptable result for both FP and CN networks. Kinematic viscosity was the only property whose 
prediction required the use of 7 neurons as the best number of neurons required, even though neurons 
between 4 and 8 were used to train the networks. Some parameters that were used in training NNs were; 
show, epoch, time, max_fail mu_reduc, min_grad, mu, mu_dec, mu_inc and mu_max. Others that were 
very important and cannot be overlooked were: the type of network, training function, adaptation learning 
function, performance function, number of layers, and properties of layers. The same network type was 
used for all the training, that is, the feedback propagation network. The training function used was Train 
LM (Levenberg-Marquardt back propagation), Learn GDM (Gradient descent with momentum weight 
and bias learning functions) was the adaptation leaning function used, and MSE (mean-squared error) was 
the performance function. All networks employed 2 layers, with logsig in the first layer and purelin in the 
second layer. This paper used the squared value (R2) of the regression coefficient to justify the prediction 
of the outputs. Other metrics, such as mean absolute error (MAE) and mean square error (MSE), could 
also be used to justify prediction results [18-20]. 

 
NN of cetane number 
CN is a very important diesel fuel property, similar to the octane number of petrol fuel. CN is the 

measure of the ignition quality of a diesel engine. The limit of CN given by United States (ASTM D 613) 
and Europe (EN ISO 5165) is at a minimum of 47 and 51 respectively. The data collected, as shown in 
Table 1, are those that satisfy both standards. Thirty five different biodiesel feedstocks, with 5 pure fatty 
acids, were used in this work to train the neural network of cetane number. Table 1 shows the feedstocks 
used and their actual cetane numbers. 
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Table 1 Modified fatty acid composition and actual cetane number of different biodiesel. 
 

No. Biodiesel Palmitic acid 
(C16:0) 

Stearic acid 
(C18:0) 

Oleic acid 
(C18:1) 

Linoleic acid 
(C18:2) 

Linolenic acid 
(C18:3) Cetane number 

1  Peanut 8 7.5 55.7     28.4 0.3 53 
2  Palm 37.5 7.2 46.4       8.6 0.3 61 
3  Crude palm oil 46.16   4.44 40.19       8.94 0.27    62.4 
4  Distilled palm oil 44.3  4.05 40.77     10.25 0.25    58.3 
5  Sunflower oil  5.5 6.1     21.4     66.2 0.8    55.6 
6  Sunflower  6.5 4.6     25.6     63.1 0.2 50 
7  High-oleic sunflower  4.8 4.7     62.9     27.5 0.1 53 
8  Rapeseed  4.9 1.6     65.3     20.4 7.9 55 
9  Soybean oil 11.3         4     25.6     53 6.1    51.1 
10  Jatropha oil 14.2 8.3     43.1     34.4 0.5    57.1 
11  Guindilla   9.2 8.3     73.1        7.7 0.8 59 
12  Olive 11.6         4     76        7.8 0.6 57 
13  Grape 7 4.3     19.1      69.1 0.3 48 
14  Almond 10.4 3.2     78      7.6 0.8 57 
15  Corn  6.5 1.5     66.4    25.2 0.1 53 
16  Okra oil  32.53    5.12 30.44    30.05 0.38    52.2 
17  Karanja oil 10.6        18.6     51.8    19 0    55.1 
18  G. abyssinica   9.2        10.1       9     71.7 0 57 
19  P pinnata oil   9.8 6.2     72.2     11.8 0     55.1 
20  Cotton oil 24.9   2.92 18.93     53.14 0      54.13 
21  Soap stocks 17.2 4.4     15.7     55.6 7.1    51.3 
22  Scum         58 15.76 19.21       0.48 0.26 60 
23  Rice bran oil 18.8  3.1 43.1     33.2 0.6    63.8 
24  Soya bean         14              4      24        52 0 45 
25  Tallow         26        25      43          3 0    58.8 
26  Conola oil  3.5 0.9 64.4        22.3 8.2 55 
27  Safflower oil    6.85   2.11 14.2  75.98 0      52.32 
28  Pongami(karanja)  9.8 6.2 72.2 11.8 0    55.1 
29  Camelina oil  6.9 6.8 32.1 20.9 33.4    52.8 
30  TME         20.3 9.2   7.3 15.7 2.8    57.2 
31  Tobacco 10.69   3.34   14.74  69.49 0.69  51 
32  Yellow grease 25.67 12.96   48.11    6.97 0.67     62.6 
33  Mellon bug 33.3  3.5  57.3   3.9 0  55 
34  Sorghum bug 12.3  7.3  41.9 34.5 0  55 
35  S birra 14.3  8.8  67.5 0 0  62 
36  Pure palmitic acid        100 0 0 0 0    74.3 
37  Pure stearic acid 0       100 0 0 0    75.6 
38  Pure stearic acid 0 0     100 0 0    57.2 
39  Pure linoleic 0 0 0       100 0  42 
40  Purelinolenic acid 0 0 0 0        100      22.7 

 
 

Multilayers of neurons with nonlinear transfer function allowed the network to learn both the linear 
and nonlinear relationships that may exist between the input and the target vectors. In this study, the input 
layer consisted of 5 fatty acid compositions, palmitic, stearic, oleic, linoleic and linolenic acids, which 
were arranged in the sequence mentioned. The target vector was the cetane number that corresponds to 
the fatty acid of each row, as tabulated in Table 2. In this network, 2 hidden layers, with logsig in the first 
layer and purelin in the second layer, were used. The input element was the fatty acid composition, while 
the output element was the predicted cetane number. All the data to train, validate and test the network 
performance were provided to the network. Twenty four sets of data, which equaled 60 % of the total 
data, was used in the training set, 15 % of the total sets, which accounted for 8 sets of data, were used in 
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the validation, with the remaining 15 % in the testing. The selection of data used at different operation 
was done randomly during the training. At the start, the network was trained with the selected number of 
neurons i.e. 6 neurons, and the ignition values of the network parameters provided by matlab were used 
before being adjusted. The time of training was set to infinity, maximum failure was adjusted until 8 gave 
the best result, the goal was left at zero, mem_reduc was left at one, min_grad was adjusted to 10-10, mu at 
0.01, mu_dec at 0.1, mu_inc was given as 10, and mu-max at 10 billion. 

The training was repeated several times until the predicted output and actual values had a very close 
relation. Figures 1 - 4 show the plot regression of the data used, the training, the validation and the test 
data. The graphs below show the training, validation and test date, with R= 0.98083, 0.97806 and 0.99274 
respectively. R when all predicted and target are compared is 0.96689. For the trained network, R2 is 
equal to 0.93488. The actual and predicted outputs are listed in Table 2 below. From this table the error 
difference can be seen as been calculated to be the difference between the target and the output predicted. 

 
 
 

 

 

 

 
 
 
 
 
 
 
 
        Figure 1 Regression of CN training data.       Figure 2 Regression of CN validation data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Figure 3 Regression of test sets for CN.          Figure 4 Regression of all data for CN. 
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Table 2 Actual cetane number against predicted cetane number. 
 

S/N Actual CN Predicted CN Error % Difference 
1  53 54.17814005 -1.17814005 -2.22291 
2  61 60.55014193 0.449858074 0.737472 
3  62.4 59.37393417 3.026065832 4.849464 
4  58.3 58.61017797 -0.310177967 -0.53204 
5  55.6 50.40250494 5.197495056 9.348013 
6  50 49.74083011 0.259169889 0.51834 
7  53 53.06509864 -0.065098639 -0.12283 
8  55 52.93692049 2.063079509 3.751054 
9  51.1 50.52711372 0.572886284 1.121108 
10  57.1 56.30349915 0.796500845 1.394923 
11  59 58.96773427 0.032265727 0.054688 
12  57 56.4686657 0.531334298 0.932165 
13  48 51.39534294 -3.395342943 -7.07363 
14  57 56.23110642 0.768893576 1.348936 
15  53 53.04128859 -0.04128859 -0.0779 
16  52.2 52.69336448 -0.493364482 -0.94514 
17  55.1 55.26089324 -0.160893239 -0.292 
18  57 55.49463339 1.505366614 2.640994 
19  55.1 55.39253605 -0.292536052 -0.53092 
20  54.13 53.79097046 0.339029544 0.626325 
21  51.3 51.26785466 0.032145339 0.062661 
22  60 60.39752553 -0.397525525 -0.66254 
23  63.8 56.10830325 7.691696748 12.05595 
24  45 44.65126191 0.348738088 0.774974 
25  58.8 63.50236653 -4.702366532 -7.99722 
26  55 53.2705501 1.729449904 3.144454 
27  52.32 52.50605328 -0.186053282 -0.35561 
28  55.1 55.39253605 -0.292536052 -0.53092 
29  52.8 52.74716039 0.052839606 0.100075 
30  57.2 57.41058319 -0.210583189 -0.36815 
31  51 52.4521459 -1.4521459 -2.84734 
32  62.6 62.15063858 0.449361417 0.71783 
33  55 57.5662845 -2.566284498 -4.66597 
34  55 54.34198904 0.65801096 1.196384 
35  62 61.39656386 0.603436145 0.973284 
36  74.3 71.56570011 2.734299893 3.680081 
37  75.6 73.45520963 2.144790366 2.837024 
38  57.2 56.91268486 0.28731514 0.502299 
39  42 41.85991735 0.14008265 0.33353 
40  22.9 22.85010494 0.049895056 0.217882 

 
 

It is seen from Table 2 that the predicted output was in close agreement with the actual cetane 
number. The highest error deviation was 12.06 % of the target data, which was for the cetane number of 
rice bran oil with 63.8 and which was predicted to be 56.1083. Apart from the pure fatty acid used to 
support the network data, all other predicted results of the various biodiesel satisfied the standard of 
biodiesel, which is a minimum of 47 by the ASTM D613 standard. From the difference between the 
actual and predicted output, it was found out that error in prediction ranged from −4.702366532 to 
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7.691696748 %. This error witnessed could be as a result of the selected actual cetane number for a 
particular feedstock, since different researchers report different values of cetane number, which is 
sometimes in a range of ± 5 %. 
 

NN for kinematic viscosity 
The high viscosity of pure vegetable oil has so far been a limitation to its use as a substitute fuel for 

diesel. Fuels with high viscosity have a greater tendency of forming deposits in the engine combustion 
chamber. The viscosity of transesterified oil is drastically reduced when compared to the parent oil. The 
viscosities of different reported biodiesel previously produced were used in the present work. 1.9 - 6.0 
mm2/s is the range of accepted biodiesel viscosity by ASTM D 6751 while a boundary of 3.5 - 5.0 mm2/s 
is the standard by EN 14214. The accepted temperature at which viscosity is reported is 40 °C by 
standard. 

For this work 46 feedstocks were chosen in training the viscosity network; this included 4 pure fatty 
acids. The input data were the palmitic, stearic, oleic, linoleic and linolenic acids respectively with the 
actual viscosity as the target vector. The list of data used in training this network is shown in Table 3. All 
the selected data were within the limit of accepted viscosity. After several trials, the network with a logsig 
transfer function in the first layer and purelin in the second layer was taken as the best network. Seven 
neurons with a logsig transfer function gave the best and closest relationship between the target and 
predicted output. The training parameters that were adjusted from the initial value were the max_fail, 
which was changed to 8, min_grad as 10-10, mu, taken as 0.01, mu_dc, adjusted to 0.1, mu_inc, as 10 and 
mu_max, used as 10 billion. 

Twenty eight data out of the 46 selected data were used for the training, and 9 for the validation, 
while the remaining 9 were used to test the performance. Figures 5 - 7 shows the plot for the data chosen 
for training, validating and to test the performance, while Figure 8 shows the plot of the total data for the 
network. 0.97663, 0.86094 and 0.89368 were the values of regression coefficient (R) for the training, 
validation, and testing, respectively. The overall target and predicted output has R equal 0.91235 and the 
overall square of R i.e. R2 for this network is 0.83238. Table 3 shows the comparison between the actual 
viscosity and predicted output; the error and the percentage difference are also included. 

 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 5 Regression of viscosity training data.      Figure 6 Regression of viscosity validation data. 
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Figure 7 Regression of viscosity training data sets.        Figure 8 Regression of all viscosity data sets. 
 
 
Table 3 Actual kinematic viscosity against predicted kinematic viscosity. 
 
No.  Actual Predicted Error % Difference 
1  Peanut 4.6 4.388897  0.211103  4.589196 
2  Palm oil 4.5 4.34332  0.15668  3.481778 
3  Crude palm oil 4.502 4.509982 -0.00798 -0.1773 
4  Distilled palm oil 4.415 4.42768 -0.01268 -0.2872 
5  Sunflower oil 4.1 4.096929  0.003071  0.074902 
6  Sunflower oil 4.2 4.243239 -0.04324 -1.0295 
7  High oleic sunflower 4.4 4.438002 -0.038 -0.86368 
8  Rapeseed 4.4 4.907185 -0.50719 -11.5269 
9  Soybean oil 4.2 4.423509 -0.22351 -5.32164 
10  Jatropha oil 4.4 4.399346  0.000654  0.014864 
11  Guindilla 4.867 4.537548  0.329452  6.769098 
12  Olive oil 4.5 4.307079  0.192921  4.287133 
13  Grape 4.1 4.224253 -0.12425 -3.03056 
14  Almond 4.2 4.330425 -0.13043 -3.10536 
15  Corn 4.4 4.319368  0.080632  1.832545 
16  Okra oil 4.01 4.211222 -0.20122 -5.018 
17  Karanja oil 4.16 4.269347 -0.10935 -2.62853 
18  G. Abyssinca 4.3 4.17668  0.12332  2.867907 
19  p. pinnata oil 4.16 4.292133 -0.13213 -3.17627 
20  Cotton oil 4.07 4.025117  0.044883  1.102776 
21  Soap stocks 4.3 4.243017  0.056983  1.325186 
22  Scum 3.75 3.567221  0.182779  4.874107 
23  Soya bean 4.5 4.459895  0.040105  0.891222 
24  Tallow 5 4.973701  0.026299  0.52598 
25  Conola oil 5 4.97051  0.02949  0.5898 
26  Non erucic brassicca oil 4.83 4.811454  0.018546  0.383975 
27  Croton megalocarpus 4.46 4.453818  0.006182  0.13861 
28  Carmelia oleifera 4.54 4.536282  0.003718  0.081894 
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No.  Actual Predicted Error % Difference 
29  Waste cooking oil 4.7 4.686016  0.013984  0.297532 
30  ZBMSO 4 3.920744  0.079256  1.9814 
31  Yellow horn oil 4.4 4.499749 -0.09975 -2.26702 
32  Used cooking oil 4.79 4.484095  0.305905  6.386326 
33  Polanga 3.99 3.937604  0.052396  1.313183 
34  Karanja 4.37 4.381937 -0.01194 -0.27316 
35  Polycarpa fruit 4.12 4.171672 -0.05167 -1.25417 
36  Pumpkin seed 4.41 4.581858 -0.17186 -3.89701 
37  Safflower oil 4.29 4.23367  0.05633  1.313054 
38  Pongami (karanja) oil  4.16 4.292033 -0.13203 -3.17387 
39  Camelina oil 4.15 4.391109 -0.24111 -5.80986 
40  TME 4.42 4.395753  0.024247  0.548575 
41  Poultry fat 4.39 4.377128  0.012872  0.293212 
42  Terminalia 4.3 4.121739  0.178261  4.145605 
43  Pure palmitic acid 2.778 2.783591 -0.00559 -0.20126 
44  Pure stearic acid 2.986 3.459677 -0.47368 -15.8633 
45  Pure oleic acid 4.518 4.67974 -0.16174 -3.5799 
46  Pure linoleic acid 3.745 3.734747  0.010253  0.273778 

 
 

NN for flash point 
The temperature at which the fuel will ignite or start to burn when it comes in contact with fire is 

called the flash point. For this study, flash points of biodiesel selected were experimentally determined 
using the standard test method, using either ASTM D 93 or EN ISO 3679. The minimum standard set by 
the United States is 130, 120 °C by European, Australian and South African standards, and 100 °C by 
Brazilian standards. 

During the training of this network, among the several numbers of neurons chosen for this training, 
the network with 6 neurons yielded the best result from several training operation. In the hidden layers, 
logsig was used as the first layer transfer function, while purelin was used in the second layer. Other 
training parameters that need to be discussed, as they were adjusted for good training, include epoch, 
whose value was 100, time, set to infinity, goal, at 0, max_fail, adjusted to 12, mem_reduc, 1, min_grad, 
set to 10-10, mu_dec, at 0.1, and mu_inc, set to 10, with mu_max being the last parameters for the training 
parameters, the value always being large; for this network, 10 billion was the value that was used. The 
input parameters used for this network were the major fatty acid composition observed in most biodiesel; 
these were palmitic acid, stearic acid, oleic acid, linoleic acid and the linolenic acid, which were arranged 
sequentially to train. The target vector was the corresponding flash point of each grouped fatty acid 
composition. The set of data used to train this network is given in Table 4, the performance regression 
plots for the selected data in the training sets, validation sets, and test sets are shown in Figures 9 - 12. 

Regression coefficient (R) equaled 0.99675, 0.98895 and 0.98369 for the training, validation and 
test sets respectively, all the data has R = 0.99066 whose square (R2) equals 0.9814. The sets of predicted 
outputs of the network and the actual flash point are given in Table 4. From these sets of data, the error 
difference between the actual and output is also included in this table. 
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   Figure 9 Regression of flash point training data. Figure 10 Regression of flash point validation data. 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11 Regression of flash point training data sets.      Figure 12 Regression of flash point training validation sets. 
 
 

NN for density 
The density of biodiesel was determined experimentally using the standard test methods by 

biodiesel standard. ASTM D1298 or EN ISO 3675/12185 are the accepted test methods, and the range of 
acceptance falls within 860 - 900 kg/m3. The temperature at which the density is reported is at 15 °C. For 
this study, the data selected were those whose density fell within the above limit; although not all 
biodiesel densities used were reported at 15 °C, some were reported at temperature above this standard. 
This led to a consideration of temperature at which the biodiesel density was determined. The sets of data 
that were used for the training of density network are shown in Table 4. The input parameters were 
palmitic, stearic, oleic, linoleic, linolenic acids and the temperature at which density was reported, while 
the target vector was the density of each fatty acid composition. Thirteen sets of data were used for the 
training, 4 for the validation, and the last 4 to test the performance of the developed neural network for 
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density. The sets of data used in the training, validation, and training account to 60 % of the total 
available data for the training, 15 % for the validation and 15 % for the testing, respectively. 

The trained network used 5 neurons in the first hidden layer with a logsig transfer function. The 
second layer used a purelin function. The training parameters were; epochs, time, goal, max_fail, 
max_reduc, min_grad, mu, mu_dec, mu_inc and mu_max, with values of 100, infinity, 0, 6, 1, 10-10, 0.01, 
0.1, 8 and 10 billion, respectively. Figures 13 - 16 show the regression of data used for the training at 
various stages. The training sets had regression coefficients (R) of 1, the validation with R equaled to 
0.99509, while the test sets had R equal 0.92283. The overall target and predicted output had R equal 
0.98498, and the overall square of R that is R2 equaled to 0.819. The deviation between the target and 
predicted output is shown in Table 4. 

 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
     Figure 13 Regression of training data for density.       Figure 14 Regression of validation for density. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
     Figure 15 Regression of test data for density.           Figure 16 Regression of all data sets. 
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Table 4 Actual value against predicted value for flash point and density. 
 

 Flash point  Density 

Biodiesel Actual 
FP 

Predicted 
FP Biodiesel Actual 

Density 
Predicted 
Density 

Peanut 176 177.5176 Kusum oil 870 869.9929 
Palm 176 174.4666 Moringa oleifera 883 884.9760 
Crude palm oil 174 178.1220 Croton megalocarpus   888.9 889.5178 
Distilled palm oil 182 177.5846 Tobacco   886.8 886.3488 
Sunflower oil 180 180.9252 Peanut 883 884.1717 
Sunflower 177 178.0262 Soya bean 885 881.9125 
High oleic sunflower 174 173.4548 Babassu 875 872.7696 
Rape 170 171.2293 Palm 880 879.8725 
Soybean oil 171 171.2427 Sunflower 860 859.8394 
Jatropha curcas oil 166 161.5699 Tallow 877 877.0324 
Grape 175 175.2883 Non erutic brasicca oil   888.8 886.2540 
Almond 172 171.9011 Terminalia catappa oil 873 872.7521 
Olive 178 170.3515 Soybean 885 885.1431 
Corn 170 171.3549 Rapeseed 882 878.4606 
Okra oil 156 157.2904 Yellow grease 873 873.0170 
G abbysiica oil 157 157.2517 Soap stock 885 884.9819 
Karanja oil 141 144.4006 Jatropha oil 880 884.3215 
Cotton oil 150 150.0999 Cotton seed 875 876.6801 
Soap stocks 169 166.6677 Rice bran oil 884 884.6287 
Soya bean 178 175.5642 Roselle oil   880.1 883.6018 
Conola oil 170 169.1864 Okra oil 876 874.9460 
Non erutic brasica oil 163 162.9198    
Croton megalocarpus 189 187.2988    
Camelina oil 150 149.8009    
Waste cooking oil 141 141.0573    
ZBMSO 174 181.9058    
Used cooking oil 176 173.1657    
Polanga 140 140.6413    
Karanja 163 163.1270    
Polycarpa fruit oil 165 165.2751    
Pumpkin seed 174 177.0178    
 
 

Comparing present work to previous prediction 
The prediction of biodiesel properties from the fatty acid composition using ANN has not been 

widely looked into. Many predictions of the properties from fatty acid compositions have been widely 
done with the aid of formulas. This has been a limitation on how to use the previous work done as a clue 
on how to improve a better neural network for biodiesel properties. Comparison was made with Damibras 
2008 [5], which used formulae relationships between some properties of biodiesel. Ten feedstocks were 
used for this relationship. 
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Table 5 Actual value of kinematic viscosity against predicted values. 
 
Feedstocks Actual KV D P KV This work D P error This work error 
Palm 4.5 4.41 4.34  0.09  0.16 
Olive 4.5 4.47 4.31  0.03  0.19 
Peanut 4.6 4.41 4.39  0.19  0.21 
Rape 4.4 4.23 4.9  0.17 -0.5 
Soybean 4.2 4.26 4.42 -0.06 -0.22 
Sunflower 4.2 4.44 4.21 -0.24 -0.01 
Grape 4.1 4.38 4.22 -0.28 -0.12 
H. O SUN 4.4 4.35 4.44  0.05 -0.04 
Almond 4.2 4.29 4.34 -0.09 -0.14 
Corn 4.4 4.22 4.32  0.18  0.08 
D P-Damibras prediction, KV-kinematic viscosity 
 
 
Table 6 Actual value of flash point against predicted values. 
 
Feedstocks Actual FP D P FP This work D P error This work error 
Palm 176 178.9 174.47 -2.9  1.53 
Olive 178 178.9 170.55 -0.9  7.45 
Peanut 176 182.17 177.43 -6.17 -1.43 
Rape 170 175.64 171.23 -5.64 -1.23 
Soybean 171 169.11 171.24  1.89 -0.24 
Sunflower 177 169.11 178.82  7.89 -1.82 
Grape 175 165.85 175.29  9.15 -0.29 
H.O SUN 174 175.64 174.35 -1.64 -0.35 
Almond 172 169.11 171.51  2.89  0.49 
Corn 170 175.64 171.27 -5.64 -1.27 
D P-Damibras prediction, FP-Flash point 
 
 

The error difference in the actual kinematic viscosity and the predicted value is shown in Table 5. 
From this table, it can be seen that the 2 predictions, i.e., by Damibras prediction and this work, predicted 
5 feedstocks, each very close to the actual values. It can be deduced from this table that the prediction by 
this present work is good enough, since the lowest error difference is 0.01, compared to the previous one, 
which was 0.03. 

Table 6 shows the comparison between the actual flash point and the predicted values of the flash 
point of 10 biodiesel feedstocks. The prediction of the flash point of 10 feedstocks made by both works is 
shown in the table and, from the result, it can be seen that this work predicted 9 feedstocks very close to 
the actual value of the flash point of the selected feedstocks. The error difference from this work had a 
least error difference of 0.24, and others fall below this amount too, apart from olive, which was 7.45. 
The prediction from the work done by Dambras 2008 had a least error difference of 0.9, and it was with 
olive where this work predicted an error of 7.45; the high value in the prediction by this work might be as 
a result of modification done in the fatty acid value. 
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Conclusions 

In this study, a remodeled ANN was used to predict the properties of biodiesel from the fatty acid 
composition in other to reduce the cost and time spent on experimental analysis of these properties. Five 
fatty acids were considered to be the major factors that affect the fuel properties of biodiesel. These 
properties have been remodeled with consideration to other fatty acid composition that might be present 
in the composition of biodiesel and are included in the neural network depending on its chain length and 
level of saturation. Four neural networks were designed and trained to predict the cetane number, flash 
point, kinematic viscosity, and density of biodiesel, with the aid of an artificial neural network with a 
logsig and a purelin transfer function in the hidden layer of all the properties being predicted. All 
networks were able to give a predicted result which was close to the actual experimental result that has 
been reported. Five, six and seven neurons were used as the number of neurons to achieve the best result 
for the model of density, flash point, cetane number, and kinematic viscosity, respectively, with a logsig 
transfer function in the first hidden layer where 2 layers were used. The 5 fatty acid composition used as 
the input parameters were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid 
(C18:2), and linolenic acid (C18:3), except for density, where temperature was considered as the sixth 
parameter. 

It is seen that the result from this study has a closer value to the actual values of the properties to be 
predicted, compared to other experimental values seen in the literature. Therefore, this approach is a more 
accurate, time-efficient and cost-efficient method for predicting biodiesel fuel properties. 
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