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Abstract 

 This article explores a transcription of a video recording Thai Finger Spelling (TFS)—a specific 
signing mode used in Thai sign language—to a corresponding Thai word. TFS copes with 42 Thai 
alphabets and 20 vowels using multiple and complex schemes. This leads to many technical challenges 
uncommon in spelling schemes of other sign languages. Our proposed system, Automatic Thai Finger 
Spelling Transcription (ATFS), processes a signing video in 3 stages: ALS marking video frames to 
easily remove any non-signing frame as well as conveniently group frames associating to the same 
alphabet, SR classifying a signing image frame to a sign label (or its equivalence), and SSR transcribing a 
series of signs into alphabets. ALS utilizes the TFS practice of signing different alphabets at different 
locations. SR and SSC employ well-adopted spatial and sequential models. Our ATFS has been found to 
achieve Alphabet Error Rate (AER) 0.256 (c.f. 0.63 of the baseline method). In addition to ATFS, our 
findings have disclosed a benefit of coupling image classification and sequence modeling stages by using 
a feature or penultimate vector for label representation rather than a definitive label or one-hot coding. 
Our results also assert the necessity of a smoothening mechanism in ALS and reveal a benefit of our 
proposed WFS, which could lead to over 15.88 % improvement. For TFS transcription, our work 
emphasizes the utilization of signing location in the identification of different alphabets. This is contrary 
to a common belief of exploiting signing time duration, which are shown to be ineffective by our data. 
 
Keywords: Sign Language Transcription, Sign Sequence Classification, Signing Video Transcription, 
Thai Finger Spelling Transcription 
 
 
Introduction 

Sign language is the main communication channel of a deaf community. However, sign languages 
are not universal nor mutually intelligible with each other. There are many different sign languages 
around the world and also numerous different signing gestures to represent their alphabets. A 
fingerspelling is used in sign language to represent alphabets for spelling proper names and any word 
whose meaning has not been defined as a semantic sign. Although signs may be defined differently, how 
signs are performed can be categorized into a few signing schemes. American, French, and Russian Sign 
Languages [1-4] employ a one-hand scheme; Australian and British Sign Languages [5,6] employed a 
two-hand scheme. To cope with 42 alphabets and 20 vowels, TFS employs a one-hand scheme with an 
extension using movement and multi-posture signings for the alphabets and a two-hand scheme for the 
vowels and intonation marks [7]. Noted that, several finger spellings of large-alphabet-repertoire 
languages, e.g., Chinese and Japanese, resort to a phonetic system for a manageable set of spelling signs 
so that their simple signing schemes are adequate. 
 Resorting to various signing schemes, TFS poses a challenge on automatically disambiguating a 
word from a signing video. Previous works [7,8] frame TFS recognition as an image classification. 
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Despite their spectacular results, their approaches cannot address the pragmatic issue of transcribing a 
signing video. 
 Our work addresses ATFS, which has not been addressed in the literature. To achieve such a task, 
our proposed system utilizes image classification, sequence modeling, frame grouping, and a few 
smoothening mechanisms. An application of smoothening operation is found to be crucial. Our results 
also show a benefit of coupling image classification and sequence modeling stages by using a feature or 
penultimate vector for label representation rather than a definitive label or one-hot coding. It should be 
noted that pipelining image classification and sequence modeling is quite a common configuration for 
video processing and decoupling the stages is often the 1st intuition. This finding may help bring 
awareness when a pipeline is designed. Regarding the evaluation of the transcription, we adopt a concept 
of Word Error Rate (WER) [9] to propose AER for the overall performance index. 
 In addition to technical contributions, our work found out that (based on general practice among 
TSF signers) signing locations can viably be utilized to group frames by alphabet. Noted that, we have 
found that a notion of effective use of signing time duration for alphabet separation is quite commonly 
perceived by our peers. However, our evidence has strongly disproved this notion and supports our choice 
of signing locations. Therefore, we emphasize the effectiveness of signing locations over signing time 
duration as a major cue for alphabet separation. 

 
 Literature review 

A Finger Spelling Recognition (FSR) system takes an image of a signing hand and automatically 
gives a corresponding sign label. FSR is therefore naturally framed as a classification problem. Nakjai 
and Katanyukul [7] have addressed FSR for TFS using their customized CNN and reported an average 
accuracy of 91.26 % on a single-image setting. A subsequent study [10] employing a Yolo-based 
Darknet-19 [11] to simultaneously locate a hand and read a sign has reported mAP 82.06 % also on a 
single-image setting, but with a complex background. Another study [8] has addressed FSR on a plain 
background using VGG-16 [12] and reported mAP 97.59 % on a single-image setting, as well as 
discovered Latent Cognizance-an innovative mechanism to allow an out-of-context awareness.  

Despite these impressive results, these previous works have framed the problem under a single-
image setting, while a video setting would be more likely in a practical situation. Although addressing 
TFS video transcription is in need of a practical application as Nakjai and Katanyukul [7] have discussed, 
an investigation into this issue has so far been lacking. Therefore, this article proposes ATFS to address 
transcription of a video clip signing TFS. Unlike other sign languages, TFS employs multiple and 
complex schemes, as shown in Table 1. This uniqueness renders challenges and the necessity of 
addressing video settings, which may not be as critical in other sign languages.   

As shown in Table 1, British, American, Russian, Arabic, French, Chinese, and Japanese sign 
languages rely mainly on still postures (either in a one- or two-handed scheme) with only a few 
exceptions for movement signing. 

On the contrary, Thai sign language relies significantly on a multi-posture scheme. It employs 26 
multi-posture signings and 1 movement. (For simplicity, we followNakjai’s and Katanyukul’s [7] 
practice, i.e., perceiving movement signing as multiple still signing postures. This simplification allows 
more straightforward conceptualization and efficient implementation. Therefore, we may refer that TFS 
has 27 multi-posture signings later on). The fact that TFS strongly relies on a multi-posture scheme makes 
a transcription task ambiguous, e.g., a sequence of TFS signs: 4, 7, 8, and 14 can be transcribed as 
[4,7,8,14], which all are treated as single postures, resulting “ตหวน” in Thai script, or transcribed as 
[4,7,8,14], whose first two signs are treated as a multi-posture signing, resulting “ทวน” in Thai script. Our 
work proposes to address this through a sequence model. 

Although sequence modeling in TFS has not been examined previously, the idea is not uncommon 
in sign language transcription studies. Liwicki and Everingham [6] employ Hidden Markov Model 
(HMM) to transcribe British Sign Language (BSL). They use Histogram of Oriented Gradients (HOG) 
and Support Vector Machine (SVM) to turn a signing video to a sequence of class labels, which includes 
all BSL signs and a non-sign label. Liwicki and Everingham [6] treat non-sign as an extra class and have 
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trained their model with non-sign images along with BSL sign images. They report a word recognition 
accuracy of 98.9 %. 

Also using HMM as a sequence model, Sidig et al. [13] study its application on Arabic sign 
language. Their approach starts from processing a video of signing hand and turning it into a sequence of 
representative optical flows. Sidig et al. [13] define a sum of all magnitudes of optical flows in an image 
to be a representative optical flow for that image. It is intended to catch the transition, which is supposed 
to cause large magnitudes of optical flows. Then, the sequence is smoothened through a one-dimensional 
convolution with a smoothing filter, before going through thresholding. Any smoothened optical flow 
whose magnitude is smaller than a designated threshold is assumed to be a sign. Then, the assumed signs 
go through a modified fourier transform to produce a sequence of features, which eventually go into the 
HMM. Sidig et al. [13] have reported an average accuracy of 99.11 %. 

Looking beyond transcription, Moryossef et al. [14] have their attention on distinguishing signing 
and non-signing sessions from a video performing German sign language. They employ part affinity field 
[15] to provide human pose estimation of each image frame. Then, Long Short-Term Memory (LSTM) as 
their sequence model takes in a sequence of the optical flows of pose estimations and identifies signing 
and non-signing frames. 

Our work employs LSTM to handle sequential data dependency but using signing location as a cue 
to identify signs of the same alphabets as well as to exclude the non-signs. As mentioned earlier, TFS 
relies on a multi-posture signing. Multiple signs may associate with the same alphabet. Therefore, an 
ability to effectively identify frames of different signs belonging to a distinct alphabet is advantageous in 
TFS, but this characteristic may be irrelevant to British or Arabic sign languages. 

The rationale behind a choice of signing location is provided later in the Experiments and Results. 
 
 
Table 1 Example of fingerspelling schemes in various sign languages. 

Sign Language Number of Alphabets 
/Characters Number of Signs Signing 

Scheme Remark 

British [6] 26 26 signs Two-handed posture  
American [1,2] 26 24 signs and 

2 movements 

Single-posture 

 

Russian [3] 32 24 signs and 
8 movements  

Arabic [16,17] 30 28 signs and 
2 movements  

French [4] 26 23 signs and 
3 movements  

Chinese [18] 3000+ 30 signs Phonetic System 
(30 sounds of Pinyin characters) 

Japanese [19,20] 46 (Hiragana) 41 signs and 
5 movements 

Phonetic System 
(46 Hiragana characters) 

Thai [7,21] 42 consonants, 
4 intonations and 
20 vowel visuals 

25 signs (consonants), 
6 signs (non-consonants) and 

17 palm locations 

Single-posture, 
Multi-posture, 

and Hand-mapping 

26 alphabets are represented by 
multi-posture signing. One 
alphabet is represented by 
movement. 
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Figure 1 ATFS. The ATFS has 3 stages, i.e., alphabet separation stage, sign recognition stage, and sign-
sequence classification (SSC) stage. Video data (a sequence of image frames) as the system input goes to 
the alphabet separation stage. The alphabet separation stage groups consecutive signing frames by 
alphabet. Each group is called an Alphabet Frame Sequence. The 2nd stage takes the frame sequence and 
provides a corresponding sequence of sign labels (or equivalence). The final stage then transcribes the 
given sequence of sign labels to a Thai word, which is a sequence of Thai alphabets. 
 
 
The proposed system 

   This section describes the process of our ATFS system, targeted 25 signs (covering all 42 Thai 
alphabets, not including 20 vowels and 4 intonation marks). The ATFS system takes a video clip as input 
and transcribes to a Thai word. Our ATFS system can transcribe only 1 word per video clip. It has 3 main 
stages: the 1st stage is alphabet separation, the 2nd stage is sign recognition, and the last stage is SSC. 
Figure 1 illustrates the ATFS system and its 3 main stages, along with examples of information going in 
and out of each stage.  
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Figure 2 Baseline approach is a simple sign transcribing system. The baseline approach takes video data 
and eventually provides its predicted Thai word. It is run by a much simpler mechanism than ATFS. The 
baseline approach transcribes an alphabet from sign labels based on a greedy algorithm. 
 
 

 
Figure 3 Alphabet-separation (ALS) stage. A sequence of image frames, shown as a superimposed image 
on the top, illustrates the signing of a word with 2 alphabets. A signer generally positions each signing at 
a slightly different location. Signing postures are broken down and displayed in order from left to right; 
arrows associate each signing to its position. Below the signing postures, frame markers (output from 
ALS stage), and true frame signs are shown. Frame markers 0 and 1 indicate non-sign and sign, 
respectively. The whole signing spells a two-alphabet word “บท”, composed of 3 signs: S1 → “บ”; (S2,S3) 
→ “ท”. Symbol N represents a non-sign. 
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Figure 4 CNN structure of SR stage (followed [7]). The CNN structure has 3 convolution layers each is 
followed by a ReLU activation and a max-pooling layer. Each convolution layer has 32 filters each whose 
size is 3×3. After the 3rd max-pooling layer, there are 2 fully-connected layers with 1,024 nodes of a 
ReLU activation and 25 nodes of a softmax function, respectively, to deliver the final predicted 25 
classes. 
 
 
 The alphabet-separation stage   
 The 1st stage, called the alphabet-separation (ALS) stage, takes a video clip and provides frame 
markers to indicate which frames belong to the same alphabet and which frames are non-signing and 
should be discarded. Each video frame will be marked as either being a sign frame (labeled 1) or being a 
non-sign frame (labeled 0). Consecutive sign frames are called sign subsequence. Figure 3 illustrates an 
alphabet separation stage.  
 Our ALS stage marks signing frames based primarily on signing positions. A signer generally 
positions their signing of a different alphabet at a slightly different location. A centroid of a hand area in 
an image frame is used to represent a signing position. We investigate 5 ALS approaches, i.e., D1, D2, 
D2M, D2S, and HM. The D1, D2, D2M, and D2S employ thresholding on a Euclidean distance between 
centroids of 2 consecutive frames. D1 simply uses a (single) threshold to decide a marker, that can be 
calculated as follows: 
 
𝑚𝑚𝑡𝑡 = 1 if 𝐷𝐷𝑡𝑡 < 𝜏𝜏𝑑𝑑, and 𝑚𝑚𝑡𝑡 = 0 otherwise,         (1) 

where 𝑚𝑚𝑡𝑡 is a marker of the 𝑡𝑡𝑡𝑡ℎ frame; 𝜏𝜏𝑑𝑑 is a pre-defined threshold; Euclidean distance, 𝐷𝐷𝑡𝑡 =
�(𝐶𝐶𝑥𝑥𝑡𝑡 − 𝐶𝐶𝑥𝑥𝑡𝑡−1)2 + (𝐶𝐶𝑦𝑦𝑡𝑡 − 𝐶𝐶𝑦𝑦𝑡𝑡−1)2, for 𝑡𝑡 = 2,3,4, . . . ,𝑇𝑇 and 𝐷𝐷1 = 0; 𝐶𝐶𝑥𝑥𝑡𝑡 and 𝐶𝐶𝑦𝑦𝑡𝑡  are x and y coordinates of a 
centroid of the 𝑡𝑡𝑡𝑡ℎ frame. D2, D2M, and D2S employ double thresholding as in Eq. 2. 
 

𝑚𝑚𝑡𝑡 = �
1, if 𝑑𝑑𝑡𝑡 < 𝜏𝜏𝑙𝑙 ,
0, if 𝑑𝑑𝑡𝑡 > 𝜏𝜏𝑢𝑢,
𝑚𝑚𝑡𝑡−1, 𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,

                    (2) 

  
where 𝜏𝜏𝑙𝑙 and 𝜏𝜏𝑢𝑢 are lower and upper thresholds; 𝑑𝑑𝑡𝑡 is a distance at the 𝑡𝑡𝑡𝑡ℎ frame. D2 uses a Euclidean 
distance 𝑑𝑑𝑡𝑡 = 𝐷𝐷𝑡𝑡. We speculate a benefit of a smoothening mechanism. Therefore, D2M and D2S are 
equipped with smoothening operations. D2M uses moving average distance, 𝑑𝑑𝑡𝑡 = 𝑉𝑉𝑡𝑡, whose value is 

calculated by 𝑉𝑉𝑡𝑡 =
∑  𝑡𝑡
𝑖𝑖=(𝑡𝑡−𝑛𝑛)𝐷𝐷

𝑖𝑖

𝑛𝑛
, for 𝑡𝑡 > 𝑛𝑛, where 𝐷𝐷𝑖𝑖 is a Euclidean distance of the 𝑒𝑒𝑡𝑡ℎ frame; 𝑛𝑛 is a user-

Walailak J Sci & Tech 2021; 18(13): 11233 
 
6 of 19 



Automatic Thai Finger Spelling Transcription Pisit NAKJAI and Tatpong KATANYUKUL 
http://wjst.wu.ac.th 

specific value (moving average window); and 𝑉𝑉𝑡𝑡 = 𝐷𝐷𝑡𝑡 for 𝑡𝑡 = 1, … ,𝑛𝑛. D2S uses a skipping distance, i.e., 
𝑑𝑑𝑡𝑡 = 𝐷𝐷𝑡𝑡 for 𝑡𝑡 = 1,3,5, … and 𝑑𝑑𝑡𝑡 = 𝐷𝐷𝑡𝑡−1 for 𝑡𝑡 = 2,4,6, …. 
 HM implements a signing location concept through a heatmap mechanism. It also takes centroid 
frequency into account. It is to utilize frequent proximity of centroids. More frequent proximity of 
centroids indicates a more likely that it is a signing frame. Specifically, a heatmap 𝐻𝐻 ∈ 𝐑𝐑𝑤𝑤×ℎ is 
constructed through the Gaussian kernel density method, that can be calculated as follows: 
 

𝐻𝐻(𝑥𝑥,𝑦𝑦) = ∑  𝑇𝑇
𝑡𝑡=1 exp�−�(𝑥𝑥−𝐶𝐶𝑥𝑥𝑡𝑡)2

2𝜎𝜎2
+ (𝑦𝑦−𝐶𝐶𝑦𝑦𝑡𝑡)2

2𝜎𝜎2
��,          (3) 

where 𝐻𝐻(𝑥𝑥,𝑦𝑦) is a heatmap pixel at (𝑥𝑥,𝑦𝑦) coordinate; 𝐶𝐶𝑥𝑥𝑡𝑡 and 𝐶𝐶𝑦𝑦𝑡𝑡  are x and y coordinates of a centroid at 
the 𝑡𝑡𝑡𝑡ℎ frame; 𝜎𝜎2 is a user-specific span parameter. Then, an alphabet area 𝐴𝐴(𝑥𝑥,𝑦𝑦) can be identified 
through thresholding, 𝐴𝐴(𝑥𝑥,𝑦𝑦) = 1 if 𝐻𝐻(𝑥𝑥,𝑦𝑦) ≥ 𝜏𝜏ℎ and 𝐴𝐴(𝑥𝑥,𝑦𝑦) = 0 otherwise. Threshold 𝜏𝜏ℎ is user-
specific. To mark a sign frame, any frame whose centroid lies inside the alphabet area where 𝐴𝐴(𝑥𝑥,𝑦𝑦) = 1 
will be marked as a signing frame, that is 𝑚𝑚𝑡𝑡 = 1 if 𝐴𝐴(𝐶𝐶𝑥𝑥𝑡𝑡 ,𝐶𝐶𝑦𝑦𝑡𝑡) = 1 and 𝑚𝑚𝑡𝑡 = 0 otherwise. 
 
 According to our pilot study whose results show the benefits of smoothening, our study employs the 
Window Frame Smoothening technique (WFS) to improve the output from the ALS stage. Given a 
sequence of frame markers from ALS as [𝑏𝑏1,𝑏𝑏2,𝑏𝑏3, … , 𝑏𝑏𝑇𝑇], WFS with a hyperparameter 𝑒𝑒 corrects the 
sequence by 𝑏𝑏𝑗𝑗 = 𝑏𝑏𝑖𝑖 if 𝑏𝑏𝑖𝑖 = 𝑏𝑏𝑖𝑖+𝑠𝑠 for 𝑗𝑗 = 𝑒𝑒 + 1, … , 𝑒𝑒 + 𝑒𝑒 − 1 in a step-by-step manner from 𝑒𝑒 = 1 to 
𝑒𝑒 = 𝑇𝑇 − 𝑒𝑒. For example, given 𝑒𝑒 = 5, when the frame markers are 0101110, WFS will output 0111110; 
when frame markers are 1001010, WFS will output 1000000.  
 
The sign recognition stage  

 The output from ALS is used to break down an entire word signing sequence into an alphabet 
sequence or alphabet sequences, as shown in Figure 1 Each image frame in every alphabet sequence is 
then fed to the 2nd process-the sign recognition (SR) stage. The SR stage takes an image frame and 
identifies a TFS sign corresponding to that frame. Our SR implementation takes after Nakjai and 
Katanyukul [7], using an image classification by Convolution Neural Network (CNN). 
 The SR stage works on a still image and processes 1 image at a time. However, feeding it with an 
alphabet sequence results in running SR multiple times and the outcome is a sign-label sequence. 
 
 

 
Figure 5 Four sign representation alternatives are explored for how they affect the SSC performance. 
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 The sign-sequence classification (SSC) stage 
 The SSC stage turns sign-label sequences into alphabets. Similar to the SR process in the sense that 
SSC machinery also works 1 at a time. The SSC process takes a sign-label sequence and predicts a single 
Thai alphabet corresponding to the sequence. A series of sign-label sequences results in running SSC 
multiple times and the collective outcome is a sequence of alphabets, which is the ATFS outcome-a 
transcribed word. 
 Intrigued by results from our pilot experiments, we explore how the representation of sign labels 
affects the transcription performance. Four alternatives of a sign-representation sequence are explored. 
Each alternative represents how SR and SSC are connected. The SSC stage takes sign labels from the SR 
stage. The SSC stage may represent sign labels simply by one-hot coding (denoted LO) or it may even 
elaborate the label representation through word embedding [22] (denoted LE). Optionally, the SSC stage 
can reach further and take a penultimate vector [8]-a value vector before softmax calculation- (denoted 
PV) or a feature vector (denoted FV) deeper inside the SR stage. Figure 5 illustrates these 4 alternatives. 
Given the input sequence [𝑥𝑥1, … , 𝑥𝑥𝑇𝑇], the SSC predicts an alphabet label 𝑦𝑦 using LSTM with 1 hidden 
layer. The LSTM has been widely used in sequence classification [23], machine translation [24], speech 
recognition [25], and video description [26]. Concisely, LSTM predicts label 𝑦𝑦 from 𝑝𝑝(𝑦𝑦|𝑥𝑥1, … , 𝑥𝑥𝑇𝑇) =
argmax(softmax(ℎ𝑇𝑇)), where ℎ𝑇𝑇 is obtained through ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑐𝑐𝑡𝑡), 𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑜𝑜ℎ𝑡𝑡−1 + 𝑊𝑊𝑜𝑜𝑥𝑥𝑡𝑡 +
𝑏𝑏𝑜𝑜), 𝑐𝑐𝑡𝑡 = (𝑓𝑓𝑡𝑡 ∗ 𝑐𝑐𝑡𝑡−1) + (𝑒𝑒𝑡𝑡 ∗ 𝑐𝑐′𝑡𝑡), 𝑐𝑐′𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑈𝑈𝑐𝑐ℎ𝑡𝑡−1 + 𝑊𝑊𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑐𝑐),𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑈𝑈𝑓𝑓ℎ𝑡𝑡−1 + 𝑊𝑊𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑓𝑓), 𝑒𝑒𝑡𝑡 =
𝜎𝜎(𝑈𝑈𝑖𝑖ℎ𝑡𝑡−1 + 𝑊𝑊𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑖𝑖), for 𝑡𝑡 = 1, … ,𝑇𝑇, when all 𝑈𝑈’s and 𝑊𝑊’s are weight parameters; 𝑏𝑏’s are bias 
parameters; operator ∗ represents an elementwise multiplication; 𝜎𝜎(⋅) represents a logistic sigmoid 
function; and ℎ0 = 0. Values of 𝑈𝑈’s , 𝑊𝑊’s, and 𝑏𝑏’s are obtained through a training process. 
 
Experiments and results 

 Our experiments are to evaluate our proposed system both entirely and stagewise. To prepare and 
evaluate our system, 2 dedicated TFS datasets are acquired. 
 

TFS video dataset 
  The TFS video dataset is collected from a professional TFS signer. The dataset contains 212 video 
clips (162 clips for training and 50 clips for testing). The 212 samples are chosen from the top 200 bi-
grams that most frequently appear in Thai names. Each video shows a normal pace and clear signing. 
Each video clip (lasts 5.37s on average at 29 fps) records a bi-alphabet Thai word (a word with exactly 2 
alphabets) corresponding to 2∼6 TFS signs. The 1st alphabet lasts 0.3 - 0.8 s on average. The 2nd alphabet 
lasts 0.68 - 1.1 s on average. Annotation has been marked on video frames for TFS signs as well as non-
signs. This dataset is intended for ALS, SSC, and the evaluation of the entire system. 
 
 TFS image dataset 
  The image dataset is collected from 11 signers. It contains all 25 hand sign classes. Each sign class 
is posed 5 times by each signer that makes it to 11 × 25 × 5 = 1,375 original images, before being 
augmented to 30,000 images. The 15,000 images are used as a training set and the remainings are used as 
a test set. The image dataset is intended for the development and stagewise evaluation of the SR stage. 
 
 Experiment setting 
  The experiments explore various combinations of approaches. Stagewise, the SR stage is 
implemented by CNN with configurations as specified by the previous study [7]. The CNN, whose 
structure is shown in Figure 4, is trained with a TFS image dataset. Five approaches (HM, D1, D2, D2M, 
and D2S) are investigated for ALS stage. HM uses σ of 10. D2M uses a 3-frame moving average. The 
HM and D1 use a single threshold, i.e., 𝜏𝜏ℎ𝑚𝑚 = 4.63 and 𝜏𝜏𝑑𝑑 = 6.5, respectively. The double thresholds of 
𝜏𝜏𝑙𝑙 = 4.2 and 𝜏𝜏𝑢𝑢 = 6.5 are applied to D2 and D2M. The double thresholds of 𝜏𝜏𝑙𝑙 = 6.5 and 𝜏𝜏𝑢𝑢 = 11.22 are 
applied to D2S. The effects of WFS on alphabet-separation results are also examined on 2 options, i.e., no 
WFS and WFS with a hyperparameter 𝑒𝑒 is 5. The SSC stage is implemented by a one-hidden-layer 
LSTM. Five alternatives of LSTM have been assessed, i.e., LSTM with 2 hidden nodes, LSTM with 28 
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hidden nodes, LSTM with 56 hidden nodes, LSTM with 128 hidden nodes, and LSTM with 256 hidden 
nodes. 
 In addition, our experiment investigates 4 alternatives of sign-label representation (i.e., an input of 
the SSC stage) as discussed earlier (Figure 5). LO using one-hot coding is straightforward. Our 
experiment uses LE with the embedding vector of size 56. PV using a penultimate vector of the SR stage 
is also straightforward. FV uses the last convolution layer of the SR stage as a sign-label representation. 
Evaluation of SSC and the entire system was repeated 5 times. 

We have also employed a rule-based approach as a baseline (Figure 2) to have others compare 
against. The rule-based approach employs CNN (the same structure and weights as one using by other 
approaches) to provide a sequence of sign labels from a video clip. Then, the sequence of sign labels is 
translated to a Thai word using prespecified rules. The rules are that (1) a subsequence of consecutive 
signs of the same label whose length is longer than a prespecified number 𝑁𝑁𝑏𝑏 (𝑁𝑁𝑏𝑏 = 5 in our experiment) 
will be transcribed as an output sign of that label; otherwise, the subsequence is ignored; (2) to translate 
from the output signs to a corresponding alphabet, a sequence of output signs is greedy-wisely matched to 
alphabets using the signs-to-alphabet mapping table. It is noted that some alphabets are corresponding to 
a single sign and some alphabets are corresponding to a series of multiple signs. 
 Another word, this baseline scheme proceeds from the beginning of the sign sequence and tries to 
match the longest subsequence possible; then proceeds along the sequence to the position after the 
matched subsequence until the sequence is exhausted. When no match is possible even for the shortest 
subsequence (length 1) the subsequence is discarded and the translation proceeds to the position after. 
 
Evaluation 

  AER is used as a metric for the entire system assessment. Inspired by WER [9], AER measures the 
minimum number of operations, i.e., substitutions, deletions, and insertions, to make a word under 
evaluation match the reference. The AER is calculated as follows: 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑆𝑆+𝐷𝐷+𝐼𝐼

𝑁𝑁
, where 𝑆𝑆 is a number of 

substituted alphabets; 𝐷𝐷 is a number of deleted alphabets; 𝐼𝐼 is a number of inserted alphabets and 𝑁𝑁 is a 
total number of alphabets in the reference word. Stagewise, the SR stage is tested on the image dataset for 
its accuracy. The ALS and SSC stages are tested on the video dataset for their F-score and accuracy, 
respectively.  
 Stagewise evaluations of ALS and SR are conducted independently, but to evaluate SSC stage 
wisely, the SR stage is employed to provide sign-label representation for each image frame. That is, the 
evaluation process starts from the hand selection of an alphabet sequence (a subsequence of images all 
associating to the same alphabet) and feed the alphabet sequence into the SR. Then, a sign-label sequence 
(output from the SR) is fed to the SSC. Finally, the output of SSC is evaluated against the ground truth for 
its accuracy. 
 
 Experimental results 
  Table 2 shows test results of the ALS stage in the F-score. The last column shows the percentage of 
improvement using WFS over not using WFS. All options have been shown to perform well with F-score 
over 0.8. D2M delivered the best performing results either with or without WFS. 
 WFS has been shown to contribute from 1.6 to 3.1 % improvement on any distance-based 
approachbut shown to contribute very little on the HM approach. This may be explained by that HM has 
its own intrinsic smoothening effect (from a gaussian basis) and therefore an extra smoothening effect 
may be just redundant. 
 In addition, D2M and D2S employ moving-average and skip-frame schemes, respectively. These 
schemes also provide some degree of smoothening effect and their superior performance to their 
counterpart D2 may be attributed to their smoothening effect as well. 
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Table 2 Alphabet-separation results. 

 F-score Improvement 
%  Without WFS With WFS 

D1 0.825 0.851 2.6 

D2 0.826 0.857 3.1 

D2M 0.861 0.886 2.5 

D2S 0.849 0.865 1.6 

HM 0.838 0.842 0.4 

  
 
 The SR stage is found to have a test accuracy of 0.818. Table 3 shows the evaluation results of the 
SSC stage. The table presents each approach with its best performing hyperparameters-hidden size- along 
with its accuracy: mean, median, and 1st and 3rd quartiles. Interestingly, despite both deriving their input 
from sign labels, LO-which straightforwardly uses one-hot coding to represent a sign label- is 
outperformed by LE-which employs word embedding to represent a sign label. We hypothesize that word 
embedding may provide an easier (numerically) digestible representation.  
 A more practical point is that sign label is represented (or, another perspective, how SR and SSC 
stages connect) hugely affects the transcription performance. LO and LE, which simply take sign labels 
from SR and pass them to SSC, were more than 10 % outperformed by PV and FV (both reach further 
into the SR stage and take either penultimate or feature vector for sign-label representation, as SSC 
input). This indicates a crucial fact that simply taking the conventional output from an earlier stage and 
pass it as an input to the following stage may significantly sacrifice an overall performance. In addition, a 
sign label, pernultimate vector, and feature vector are in the order processed information backwardly 
along the SR stage.  
 Our results may indirectly provide a peek into how information is lost along the deep neural 
processing path. Since FV and PV show similar performance, this may imply good information 
preservation from the last convolution layer (providing a feature vector) to the penultimate layer 
(providing a penultimate vector). As performance drops significantly as we use a label instead of a 
penultimate vector, this may imply a substantial loss of information along the way from a penultimate 
layer to a softmax layer to the final label decision, which may have been done through an argmax 
function. Table 4 shows the overall performance of different approaches.  
 Table 4 presents each approach with its best performing hyperparameters—hidden size—along with 
its average AER over 5 repeats. The Benefit columns present the improvement of using the WFS 
technique over not using it.  
 Our results reveal that a combination of D2M and WFS for alphabet separation and FV for SSC 
leads to the best performing transcription (AER 0.256). Beyond the best performing set, the big picture 
showing in Table 4 is that smoothening mechanisms are crucial to the overall performance. D1 and D2 
without WFS do not have any smoothening mechanism and they deliver the worst (highest) AERs. 
Performances of D1 and D2 without WFS are multiple times worse than the other treatments. Comparing 
D2 to its smoothened counterparts (D2S, D2M, D2 with WFS, D2S with WFS, and D2M with WFS) 
reveals that smoothening can improve the transcription performance from 2.6 times (LO: D2/D2M) to 16 
times (FV: D2/D2M+WFS). 
 Table 5 provides an example of how prediction outputs look like. It appears that WFS helps reduce 
alphabet duplication significantly. Figure 6 shows an example illustrating how smoothening mechanism 
helps improve the transcription performance by keeping the consecutive signing intact. 
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Table 3 Sign sequence classification results. 

Sign Label Representation Hidden Size 
Transcription Accuracy 

Mean Median Q1 Q3 
LO 256 0.744 0.75 0.74 0.75 
LE 128 0.790 0.79 0.78 0.80 
FV 128 0.894 0.91 0.89 0.92 
PV 256 0.924 0.92 0.91 0.97 

 
 
Table 4 The overall performance (in AER) of the entire pipeline. 

 Without WFS With WFS Benefit of WFS  
(over not using WFS) 

 LE LO FV PV LE LO FV PV LE LO FV PV 
D1  4.49 4.5 4.186 4.374 0.342 0.434 0.278 0.348 13.129 10.369 15.058 12.569 
D2  4.432 4.446 4.13 4.318 0.34 0.414 0.26 0.342 13.035 10.739 15.885 12.626 
D2M  1.658 1.708 1.332 1.542 0.344 0.408 0.256 0.298 4.820 4.186 5.203 5.174 
D2S  1.328 1.364 0.996 1.216 0.514 0.552 0.336 0.452 2.584 2.471 2.964 2.690 
HM  1.052 1.118 0.778 0.962 0.528 0.594 0.344 0.442 1.992 1.882 2.262 2.176 
Baseline  0.63 

 
 
Table 5 Examples showing effects of frame smoothening. The examples are arbitrarily selected from 
prediction results when using D2M with a feature vector. The reference column shows the correct 
answers. 

FV with D2M Without WFS With WFS Baseline 
Sample Reference Prediction AER Prediction AER Prediction AER 

Data_63  ธน  ตหชน  1.5  ชน  0.5  ตต  1 
Data_84 ชล ชหชกลล 2 ชล 0 ล 0.5 
Data_196 ชพ คชหชพพ 2 ชพ 0 หพ 0.5 
Data_182 ธง ตหกนง 2 ชง 0.5 - 1 
Data_26 ธร ตหธร 1 ธร 0 ร 0.5 
Data_111 ชอ ภงหชอ 1.5 ชอ 0 อ 0.5 
Data_117 ชว ชงหกว 1.5 ชว 0 ว 0.5 
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Figure 6 Sign and non-sign frames: human annotation (reference, the uppermost plot), marking using 
D2M (the middle plot), and marking using D2M with WFS (the lowermost plot). A marking of 1 
indicates a ‘sign’. Marking of ‘0’ indicates a ‘non-sign’. WFS has corrected D2M output and resulted in 
marking more resemble human annotation. 
 
 
 Affirming the stagewise results, using word-embedding seems to provide an extra beneficial effect 
on the transcription as shown by LE outperforming LO in both stage-level accuracy and comparable 
pipeline AER (most noticeable at ∼21 % improvement on D1, with WFS). Noted that we speculate a 
marginal benefit of using a word embedding with features or penultimate vectors. However, the decisive 
conclusion may require a dedicated study.   
 As discussed earlier, taking information deeper into the SR stage seems to allow the SSC stage and 
the entire pipeline to perform better (as AERs from using FV are lower than ones from using PV and 
AERs of PV are lower than ones of LO). Figure 7 illustrates this point. Regardless of the treatment, a 
higher degree of coupling seems to be more beneficial and the trend is monotonic (almost linear). 
 Apparently from Table 4, smoothening (WFS) is beneficial in every case, with a larger effect on D1 
and D2. Noted that, both D1 and D2 do not have moving average or skip-frame mechanisms. With WFS, 
all approaches outperform the baseline as shown in Figure 8. 
 To compare different smoothening techniques, Table 4 can be rearranged, as shown in Table 6. We 
can see that all smoothening techniques help improve the overall transcription performance, as AERs of 
moving average, skipping a frame, and WFS are smaller than no smoothening (D2) in multitude. Among 
these techniques, WFS is most beneficial. However, we view them rather as options that can be combined 
if suitable than as strickly competing choices. Speaking of combing the smoothening techniques, it is 
interesting that skipping frame seems to work better than moving averagewhen applied alone. However, 
when combined with WFS, it is moving average that delivers a better performance regardless of what 
sign-label representation is used. We speculate that the explanation may lie in the smoothening details: 
moving average and WFS may well complement each other, while skipping frame may have some effect 
overlapping with WFS. 
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Table 6 Direct comparison of different smoothening techniques (Re-arranged Table 4 for a better 
perspective on different smoothening techniques). 

Smoothening 
Sign-Label Representation 

LE LO FV PV 
No smoothening (D2) 4.432 4.446 4.13 4.318 
Moving Average  (D2M) 1.658 1.708 1.332 1.542 
Skipping Frame  (D2S) 1.328 1.364 0.996 1.216 
WFS  (D2 + WFS) 0.34 0.414 0.26 0.342 
 
 

 
Figure 7 Performance (in AER) of various treatments over a degree of stage coupling, from low coupling 
(LO) to medium coupling (PV) to high coupling (FV). 

 
 

 
Figure 8 AERs of different treatments. A lower AER indicates a better performance. 
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 Regarding how sign and non-sign frames are identified, there are many approaches. Some use 
image features for identification. Liwicki and Everingham [6] use a supervised model to identify a non-
sign frame. Ingeniously, Nakjai and Katanyukul [8] use a probabilistic inference—Latent Cognizance—

taking advantage of what the model has already learned. Some use image transition to identify non-sign 
frames. Sidig et al. [13] use optical flows. Some dedicate an entire system just to identify non-sign 
frames. Generally, the transition approach is based on the assumption that frames during the transition are 
non-signing frames; otherwise, they are signing. Therefore, the transition approach is likely to be 
computationally cheaper than an image-feature-based approach, but this comes with a risk for unintended 
hand postures during non-signing sessions or fast signing during a signing session. To partially address it, 
Moryossef et al. [14] propose a system utilizing part affinity field [15], optical flow, and LSTM dedicated 
to identifying signing and non-signing sessions. 
 Close in spirit to image transition, our approach is based on signing location. It is a convenient 
choice because the signing location is already used for alphabet separation. The rationale behind using 
signing location is from our study on TFS signers’ behavior to find an effective cue to identify distinct 
alphabet signing. 
 To identify distinct alphabet signing, we conjectured 2 possible indicators, i.e., (1) that distance 
between centroids of hands in consecutive frames was small when the 2 consecutive frames associate to 
the same alphabet and the distance was large otherwise; (2) that posing time duration of the alphabet was 
long compared to a transition time. These 2 conjectures were examined as follows. It should be noted that 
while using hand location, i.e., a TFS signer performs each alphabet signing at a distinct hand position, is 
a common practice, the direct implementation of this signing location is quite computationally expensive; 
therefore, we develop an assumption 1 so that if it is validated, the implementation can be done more 
efficiently. 
 Assumption 1 is that the distance between centroids of hands in consecutive frames is small when 
the 2 consecutive frames contain the same alphabet and the distance is large otherwise. That is, 2 
consecutive frames are corresponding to the same alphabet when their centroids of hands appearing in 
both frames locate close to each other (when superimposed). Figure 3 illustrates the rationale. 
 Assumption 1 Verification. To evaluate the assumption 212 signing video clips were hand-marked 
for signs and non-signs on all image frames. Given that all clips correspond to 2-gram words, sign and 
non-sign labels along with frame orders in the sequence can be used to group frames into 3 categories: 
signing frame of the 1st alphabet (called “First Alphabet”), signing frame of the 2nd alphabet (called 
“Second Alphabet”), and non-signing frame (called “Transition”). Then, a centroid of a hand in each 
frame can be located and the distance between centroids in 2 consecutive frames can be computed using 
Euclidean distance. Figure 9 shows the distances in boxplots. 
 Figure 9 has the y-axis representing the distance in a number of pixels. Due to the possibility of 
variation in a signer’s hand sizes and shapes and visual sizes due to a camera effect, we derive a measure, 
which is relative to a signer’s hand size. Given a signer’s hand contained in a bounding box of 107 ×
205 pixels (hand sign #11 in Nakjai and Katanyukul [7]; hand sign #11 revealing the entire palm is 
selected for clarity purpose), the diagonal is 𝑑𝑑 = √1072 + 2052 = 231.24 pixels. Our proposed measure 
is a percentage of the underlying distance (in pixels) to the diagonal length of the signer’s hand (also in 
pixels). For example, a median distance of the 1st alphabet is 5.32 pixels, which is equivalent to 5.32

231.24
×

100 % = 2.3 % (of the diagonal length of the palm posed as sign #11). 
 Figure 9 shows the distances of the 3 groups. The distances in the alphabet groups (median 2.3 and 
1.6 % in the First Alphabets and the Second Alphabets, respectively) are much smaller than the distance 
in the Transition group (median 14.35 %). This finding supports Assumption 1. 
 Assumption 2 is that the posing time duration of the alphabet is long comparing to a transition time. 
 Assumption 2 Invalidation. To evaluate Assumption 2, the same dataset as in Assumption 1 
evaluation is used. Time duration can be inferred from a number of consecutive frame labels of a 
particular category. For example, frames No.16 to No.30 all are marked as the 1st alphabet. The time 
duration of the 1st alphabet is 15 frames (@ 29 fps, 15/29 = 0.517 s).  
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 Figure 10 Figure 10 shows the time duration of each group. While transition time is quite short 
(17/29 = 0.586 s on median) compared to the time duration of the Second Alphabets (24/29 = 0.828 s on 
median), it is still difficult to distinguish the transition time from the time duration of the First Alphabets. 
This finding is against Assumption 2, especially when considering the First Alphabets and Transition. 
Therefore, as Assumption 2 is invalidated, we discard time duration as a factor for alphabet separation. 
We emphasize this point since we have found that Assumption 2 is a common misconception perceived 
by many of our peers. 
 
 

 
Figure 9 Boxplots of the distance between centroids in consecutive frames by category. Median 
distances: 5.32 pixels (2.3 %), 3.7 pixels (1.6 %), 33.18 pixels (14.35 %) for First Alphabets, Second 
Alphabets, and Transition, respectively. 
 

 

 
Figure 10 Time duration of signing per category. Median times: 17 (0.59 s), 24.5 (0.83 s), 17 (0.59 s) for 
First Alphabets, Second Alphabets, and Transition, respectively. 
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Discussion 

 Among alternatives explored for the alphabet separation process (ALS), our study has found D2M, 
which uses the distance between centroids of hand areas in 2 successive frames along with double 
thresholding and moving average, to be the most effective. This approach is based on location signing 
assumption, which our investigation has shown to be a viable cue and following the practice among TFS 
signers. The underlying spirit of a signing-location-based approach may be different from a concept of 
optical flow [6,13,14], but some implementation of optical flow estimation may arguably be close to 
D2M or other alternatives explored here. (An investigation of implementations of optical flow estimation 
is beyond the scope of this article.) 
 In addition to identifying frames signing for the same alphabet, our 1st stage ALS also indicates 
which frames are non-signing and should be discarded. Identifying non-signs is a crucial and interesting 
issue. Some [6] train a model with non-signing frames to label out non-signs in a supervised manner. 
Some [8] use a creative approach exploiting already learned probabilities and infer non-signs through 
approximation and Bayesian inference. Some [13] use transition, such as optical flow, as an indicator to 
distinguish signs from non-signs. As discussed earlier, a transition-based approach tends to be 
computationally cheaper than an image-based approach. However, a transition-based approach is 
susceptible to situations, such as unintended hand postures or rapid signing. Being aware of the risk of 
transcribing unintended hand postures during a non-signing session, some [14] partially address the issue 
using a full video-sequence analytic system, employing state-of-the-arts in deep computer vision and 
sequence modeling to distinguish between signing and non-signing sessions. Our ATFS is based on 
signing location, which is a convenient choice for that it is our cue for alphabet separation. The 
underlying rationale of signing location and 1 of transition are quite different, but the implementations 
may appear similar. While the transition is quite a common conception, signing location is derived from 
our dedicated study revealing a customary TFS practice, i.e., positioning each alphabet signing at each 
location. 
 This study has proved the viability of signing location to effectively indicate distinct alphabet 
signing. However, not only do TFS signers position each alphabet signing at each location, but they also 
perform it in order along with a linear progression. For example, to sign “ทวน” (in Thai script), a sequence 
of signs (4,7), 8, and 14 is performed where signs 4 and 7 representing the same alphabet are performed at 
the same location; then sign 8 is performed on another location horizontally next to the location of signs 4 
and 7; lastly sign 14 is performed on the location horizontally next to the location of sign 8. This TFS 
practice of linear progression in order has not been sufficiently investigated nor exploited. The 
investigation of this matter may lead to a reliable yet computationally efficient TFS transcription system. 
 Recalling that our 2nd stage—Sign-recognition (SR) stage, taking an image frame and outputs a TFS 
sign (or a vector associating to a sign)—was implemented with CNN following [7] and found to be 0.818 
accurate. Conferring to previous reporting accuracy of 0.91, Nakjai and Katanyukul [7] have tested their 
system on 125 images, while our SR was tested on an augmented data of 15,000 images. The difference 
in sizes of the test data may explain the difference in our reporting accuracy and 1 from the original.  
 Regarding the performance, ATFS with an AER of 0.256 may seem modest, comparing to still-
image systems [7,8,10]. Firstly, those previous works are targeted still image settings, while ATFS is 
addressing a video setting. Secondly, AER is a different index intended for transcription of a word-level 
evaluation, while accuracy or mAP used in still-image systems [7,8,10] is meant for a sign-level 
evaluation, i.e., input is an image and output is a sign (not a word; it is not even an alphabet). To 
transcribe a word, one needs to read a sequence of signs from a signing video, before transcribing a 
sequence of signs to a sequence of alphabets, i.e., a word. Therefore, accurately identifying a sign from a 
given image is just a starting point of a transcription system. Also, while accuracy and mAP are 
“optimistic” indices, i.e., the higher number the better (perfect score is 1), AER is a “perfectionist” index, 
i.e., the lower number the better (perfect score is 0). Lastly, we see this discrepancy as a strong indicator 
for a challenge in transcribing TFS, as it stresses how difficult it is to progress from recognizing signs to 
reading a word. This points out the need to progress beyond sign recognition to achieve a practical TFS 
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transcription system that people can rely on. In addition, impressive performance reported in studies of 
other sign languages [6,13] has shown us the prospect TFS transcription might become and the prospect is 
likely to be with sequence modeling. Regarding studies of other sign languages, the investigation of the 
association between linguistic sign language characteristics and recognition issues is of crucial 
significance. It could allow progress in different sign languages to transfer across and mutually 
complement each other. That would lead to substantial progress in the field and is seemingly a good 
potential research direction. 
 As our findings reveal a benefit of the WFS mechanism, our experiment has investigated a few 
smoothening techniques other than WFS, including moving average (treatment D2M) and skipping 
distance (treatment D2S). Treatment HM explores the application of heatmap in alphabet separation. 
Although HM may not perform a smoothening operation in the sense of smoothening the subject over 
time, it gives the smoothening effect over the location. Despite WFS superiority in our experimental 
results, we believe that in general, a proper application of smoothening will help the system performance. 
Therefore, other smoothening techniques, e.g., convolution with a smoothing filter [13] can be beneficial 
as well. Further investigation into smoothening techniques, which are accounted for both smoothening 
over time and location, may be intriguing and might even be achieved simply through convolution over 
combined dimensionality of time and location.  
 On evaluation, instead of using word accuracy, which is rather rough especially for development in 
an early stage, we adopt AER. AER is an alphabet version of WER. Having a finer performance index is 
more reflective and allowing a better chance for inspection and improvement, which we believe is more 
suitable for the current state of TFS transcription research. 
 In addition to our major objective of building a reliable TFS transcription system, our findings may 
additionally provide some insight into where information might have lost along the neural processing 
path. The information seems to be well intact as it passes from the last convolution layer to the 
penultimate layer. However, the information seems to be substantially lost somewhere along the path 
from the penultimate layer to the softmax layer and then to the final class decision. 
 Interestingly, although both one-hot coding and word embedding are representing a sign, the word-
embedding approach (LE) apparently outperforms the one-hot-coding approach (LO) stagewise and 
overall. We speculate that word-embedding may have provided a computationally easier representation 
than that of the straightforward one-hot coding. This observation has brought curiosity whether word-
embedding could help feature or penultimate vector on a similar matter. This may worth a dedicated 
study. Noted that, our ATFS relies on an alphabet-separation stage to mark out any non-signing frame. 
Our previous studies [8,27] have discovered a promising approach—Latent Cognizance (LC)—to identify 
an out-of-context question, which in this case is a non-sign image. Employing LC either alone or with 
transition or with sequence modeling, to clean up non-signing images from a sequence of image frames 
has not yet been explored. 
 Lastly, our experiment has evaluated ATFS on video clips of bi-gram words, but ATFS structure or 
any of its components does not limit it from the capability to transcribing a word of any length. Our 
investigation here has pioneered a TFS recognition into a transcription realm. There are a lot of works to 
be done, including improvement on its accuracy, coverage of vowels, intonation marks and how to 
integrate everything, and thorough evaluation on rich datasets, before a practical full-featured automatic 
TFS reading system could be realized.  
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Conclusions 

 In this article, we proposed an ATFS, using a three-stage transcription process as well as a WFS 
mechanism to improve the overall performance of ATFS. The ATFS addresses an ambiguity issue of 
transcribing a TFS signing video data and has achieved an AER of 0.256. Our findings disclose an 
advantage of coupling image-classification and sequence-modeling stages, affirm the importance of 
smoothening mechanism, and also reveal a benefit of WFS mechanism in both stagewise and overall 
performance, with possible improvement up to 15.88 %. Data and code are made public at 
https://github.com/beebrain/ATFS_Thai_Finger_Spelling. In addition, signing locations are an effective 
cue for marking alphabet signing, conferred to signing time duration.  
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