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Abstract 
 
 Lung diseases are now the third leading cause of death worldwide because of the many risk factors 
we are exposed to daily, such as air pollution, tobacco use, viruses (such as COVID-19), and bacteria. 
This work introduces a new approach of the 3D Active Contour Model (3D ACM) to estimate an 
inhomogeneous motion of lungs, which can be used to analyze lung disease patterns using a hierarchical 
predictive model. The biophysical model of lungs consists of End Expiratory (EE) and End Inspiratory 
(EI) models, generated by high-resolution computed tomography images (HRCT). A proposed technique 
uses the 3D ACM to estimate the velocity vector by using the corresponding points on the parametric 
surface model of the EE model to the EI model. The external energy from the EI models is the external 
force that pushes the 3D parametric surface to reach the boundary. The external forces, such as the 
balloon force and Gradient Vector Flow (GVF), were adjusted adaptively based on the 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 which was 
calculated from the ratio of the maximum value of EI to EE on the Z axis. Next, the feature representation 
is studied and evaluated based on the lung structure, separated into five lobes. The stepwise regression, 
Support Vector Machine (SVM), and Artificial Neural Network (ANN) techniques are applied to classify 
the lung diseases into normal, obstructive lung, and restrictive lung diseases. In conclusion, the 
inhomogeneous motion pattern of lungs integrated with medical-based knowledge can be used to analyze 
lung diseases by differentiating normal and abnormal motion patterns and separating restrictive and 
obstructive lung diseases.  
 
Keywords: 3D active contour model, lung disease analysis, inhomogeneous motion pattern, velocity 
vector map, hierarchical classification 
 
 
Introduction 

 A lung is a vital and heterogeneous organ in the human body. An abnormality of respiration leads to 
regional differences, depending on diverse functions in the lymphatic system, immune system, metabolic 
system, and mechanical properties such as gravity. According to the World Health Organization (WHO) 
[1], lung diseases, especially Chronic Obstructive Pulmonary Disease (COPD), are the third leading cause 
of death globally in 2016. Tobacco use is also the fourth risk factor of death in Thailand. It was found that 
the death rate from impaired lungs is increased by the primary risk factors, which are tobacco use, air 
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pollution, chemicals, viruses, and bacteria. The lower respiratory infection and trachea, bronchus, and 
lung cancer also include the top 10 global causes of death. The cause factors directly affect our daily life 
nowadays. The early detection of respiratory abnormality is essential to consider when it is reversible or 
almost fully reversible. The predominant diseases in each regional lobe can be divided into three regions: 
upper lobe [2,3], middle lobe [4], and lower lobe [3-5]. Disease characterization is challenging because of 
its diversity in many aspects. It can be considered by lung components such as airways, air sacs, 
interstitium, blood vessels, pleura, and chest wall. Initially, to diagnose a lung disease is to distinguish an 
obstructive lung disease and a restrictive lung disease. On the physical level, a patient with obstructive 
lung disease has difficulty during expiration because of the narrowed or blocked airways (airflow 
limitation). The remaining air inside affects the residual volume (remaining high) of the lung and leads to 
air trapping and hyperinflation problems, which can be observed in the anterior-posterior (AP) axis of CT 
images. In contrast, a restrictive lung disease limits the ability to inhale air. The patient cannot take a deep 
breath, which affects the total lung capacity and residual volume (low). 

The criteria to diagnose obstructive and restrictive lung diseases are defined by the Pulmonary 
Function Tests (PFTs). The PFTs consist of three main parameters: 1) The Forced Vital Capacity (FVC) 
test shows the amount of air that a person can quickly and forcefully breathe out after a deep breath, 2) 
the Forced Expiratory Volume in One Second (FEV1) test shows the amount of air a person can 
forcefully exhale in one second of the FVC test, and 3) the Total Lung Capacity (TLC) test describes the 
volume of air remaining in the lung after exhalation. The FEV1/FVC ratio is used to diagnose the type of 
lung disease and the severity of a disease. The FEV1/FVC ratio is decreased in the obstructive pattern and 
increased in the restrictive pattern. For example, an FEV1/FVC ratio of less than 0.7 [18] is considered as 
COPD and the stage of COPD is classified by the percent of FEV1: Mild FEV1 ≥ 80 %, Moderate 50 % ≤ 
FEV1 < 80 %, Severe 30 % ≤ FEV1 < 50 %, and Very Severe FEV1 < 30 %. These tests are the gold 
standard to diagnose COPD [6,7]. The TLC increased in a normal, obstructive pattern by the remaining 
air in the lungs and decreased in a restrictive pattern. These characteristics of lung patterns are detected 
and analyzed to diagnose lung diseases. However, to identify a complex lung disease, thorough lung 
function testing is required, such as an X-ray and CT scan. In this work, the Deep Inspiration Breath-Hold 
(DIBH) technique of CT-scan is used to characterize two different phases of respiration which are the 
End Inspiratory Phase (EI-images) and End Expiratory Phase (EE-images). 
           Nowadays, radiologists have some difficulties analyzing the two images (EI and EE images) at one 
time. They need to examine EI and EE images on two monitors separately and manually to locate the 
anatomical reference points between the two models, such as blood vessels, spinal cord (Thoracic 
Vertebrae), and trachea, to diagnose diseases. This requires experience to detect the abnormalities for 
answering the clinical questions on a diagnostic test. Therefore, to interpret the medical information from 
the two phases of respiratory CT images (EI and EE images) is still a research gap at present. 
           This research introduces a new approach to determining the lungs' velocity vector map from paired 
inspiratory-expiratory chest CT images from the 3D Active Contour Model (3D ACM) technique. 3D 
ACMs are frequently used in medical image analysis because they can detect a non-rigid object by using 
the parametric curve, and the parametric curve drives by the potential forces from the boundary of the 
target object. In this work, the ACM is used to overcome the non-rigid registration of the deformation 
surface, and its external force is also useful to help estimate the motion of the lung. The computing time 
can be reduced by using the ACM. It was found that the Finite Element technique also provides reliable 
results [8,10], but it took 88.6 h to analyze images [8]. In contrast, the computation time can be reduced 
by using the 3D ACM. For example, this work took approximately 10 min. 

Because the shape of the lungs is non-rigid and individual for each person, an inhomogeneous 
pattern of the lung motion is considered for screening the lung diseases by two modules. Firstly, the 
normal and abnormal lungs are classified. The weighted average precision is 85.6 %, with 7 False 
Negative (FN) cases. Secondly, restrictive and obstructive patterns are classified. From the integration of 
lung pathology and anatomy knowledge, the inhomogeneous model of lung lobes can predict the 
predominance of lung diseases with 82.34 % weighted average precision with 8 FN cases. A comparison 
between the ANN and SVM techniques shows that SVM has the higher performance to maximize the 
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support vectors from 2 groups of data. Therefore, it is concluded that lung motions can be used to 
prescreen lung diseases. 

This paper is organized as follows. The Materials and Methods section provides the necessary 
information about data collection and experimental settings and also describes the methodology. The next 
section describes an evaluation technique and shows the results. Then, the output is interpreted in the 
Discussion section. Finally, the summary and future works are concluded in the last section. 
 
Materials and methods 

 The methodology of the proposed technique is demonstrated in Figure 1. It consisted of 6 main 
steps: the data acquisition, preprocessing, 3D surface rendering, 3D parametric Active Contour Model, 
velocity vector map and lung lobe separation, and feature analysis and classification. 
 

Data acquisition 
 The CT images and medical advice were obtained from the Thammasat University Hospital, 
Pathum Thani, Thailand. The input format is EE and EI high-resolution computed tomography (HRCT) 
images in the transverse plane with 1 mm thickness (200 images per image stack) or 2 mm thickness (100 
images per image stack). The HRCT images are compressed in DICOM format. The 2-D resolution of CT 
images is 512×512 pixels with an (i, j, k) coordinate system. Compared with the cartesian coordinate 
system, the axial plane is the Z-axis, coronal plane is the Y-axis, and sagittal plane is the X-axis. The 
interpretation of HRCT images is done by relative quantitative measurement of radio density by adjusting 
the intensity level of a 16-bit of gray-scale called Hounsfield Unit (HU). The window width (WW) and 
window level (WL) are the thresholds for setting the gray-scale range. A suitable WW and WL for the 
pulmonary images are 1000 and −700 [6,11], respectively. OsiriX MD software is used to render the 3D 
surface model of lungs. The EI and EE HRCT images are divided into left and right models, named as 
EIright, EEright, EIleft, and EEleft.  
 
 

 
 
Figure 1 The overview of the purposed technique. 
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Preprocessing 
Image preparation, such as noise reduction and smoothening of surfaces, is performed to improve 

the segmentation efficiency and reduce unwanted noise. The noise from the small bronchi needs to be 
removed before rendering the 3D surface model. First, the WW and WL are set to show the pulmonary 
elements clearly. Then, the inverted filter is used to convert the intensity from −1024 to 1024 and from 
1024 to −1024. Then, the region of interest (ROI) is applied to the pulmonary area, and the intensity 
inside the ROI is converted into 1024, as demonstrated in Figure 2 (right). 
 
 

 
Figure 2 Noise reduction process: (left) WW and WL setting, (middle) invert filter, and (right) removing 
noise inside the lung. 
 
 

3D Surface rendering 
3D Surface rendering is performed on the stack of CT images. The left and the right lungs are 

performed separately. Some unwanted areas, such as the primary airway, are removed. Then, 3D surface 
generation is applied to each lung model. Finally, four lung models are generated: EIright, EEright, EIleft, and 
EEleft as shown in Figure 3. It can be observed that the central airway is already removed. According to 
computational time, resampling process is applied to the lung models to reduce the resolution to 20,000 
vertices. Works in the literature [9,12] show that 20,000 vertices are acceptable to estimate the motion of 
a lung with high accuracy.  
 
 
Table 1 The location of landmark points. 
 
Fissures Landmark points (x, y, z) Anatomical location 
 
 
ROF 

ROF1 Spinal cord: T3 
ROF2 6Th rib at midclavicular line 
ROF3 6Th rib at midclavicular line 

 
RHF 

RHF1 4Th rib 
RHF2 5Th rib 
RHF3 5Th rib 

 
 
LOF 

LOF1 Spinal cord: T3 
LOF2 6Th rib at midclavicular line 
LOF3 6Th rib at midclavicular line 
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Next, the landmark points are detected based on the anatomical location in order to generate an 
oblique fissure plane (𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒄𝒄 + 𝒅𝒅 = 𝟎𝟎) from 3 landmark points. An oblique fissure plane is used 
to separate the lung into 5 lobes: 2 lobes for the left lung and 3 lobes for the right lung. The landmark 
points are kept into 3 sets for each oblique fissure: Right Oblique fissure ROF (ROF1, ROF2, ROF3), Right 
Horizontal fissure RHF (RHF1, RHF2, RHF3), and Left oblique fissure LOF (LOF1, LOF2, LOF3). The thoracic 
landmarks of ROF, RHF, and LOF are represented in Figure 3 and are based on the anatomical location, 
as described in Table 1.  

 

 
Figure 3 EE and EI models and representation of 3 fissures on the 3D model: right lung (ROF and RHF), 
left lung (LOF). 
 
 

3D Active Contour Models (3D ACMs) 
The 3D ACMs are generally used as a non-rigid segmentation-based technique, especially in 

biomedical images. The concept of 3D ACM is to minimize the internal and external energies, and the 
desired boundary of the target will stop the final evaluation of the active contour. In this study, the 
velocity vector map of the respiratory motion starting from the EE to the EI phase is detected by 
estimating the control point on the 3D ACM technique. The apex part of the lung is detected and assigned 
as the reference point for aligning the model. The parameters of the 3D ACM for adjusting internal and 
external forces are set due to the sensitivity to the shape, such as a sharp edge. Therefore, they are 
adaptable depending on the which represents the shape of the lungs. 

The 3D Parametric Active Contour Model is performed to estimate the velocity vector between the 
EE and EI lung models. A mesh represents the control points of the 3D active contour. The energy 
function in 3D ACM develops the parameter function to control the control points in more dimensions as 
𝒗𝒗 ∶ [𝟎𝟎,𝟏𝟏] ×  [𝟎𝟎,𝟏𝟏] → ℝ𝟑𝟑. The 3D contour is described by a function of v. The contour is placed on an 
image as 𝒇𝒇 ∶  ℝ𝟑𝟑 →  ℝ. The snake model combines the internal energy 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊 and external energy 𝑬𝑬𝒆𝒆𝒂𝒂𝒊𝒊into 
𝑬𝑬 = 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗) + 𝑬𝑬𝒆𝒆𝒂𝒂𝒊𝒊(𝒗𝒗). The 3D image force concerns the movement in 3 directions of the parametric 
curve in 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗). Therefore, the parameter function (𝒗𝒗 = 𝒗𝒗(𝒔𝒔, 𝒓𝒓) = [𝑿𝑿(𝒔𝒔, 𝒓𝒓),𝒀𝒀[𝒔𝒔, 𝒓𝒓],𝒁𝒁(𝒔𝒔,𝒓𝒓)]) is added to 
control the corresponding points (or the control points) where 𝑿𝑿,𝒀𝒀,𝒁𝒁 are the corresponding coordinate 
function of the surface. The internal energy 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗) can be expressed as;  

𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊 = ��𝜶𝜶𝒔𝒔�𝒗𝒗𝒔𝒔′ �
𝟐𝟐 + 𝜶𝜶𝒓𝒓�𝒗𝒗𝒓𝒓′ �

𝟐𝟐� + �𝜷𝜷𝒔𝒔�𝒗𝒗𝒔𝒔𝒔𝒔′′ �
𝟐𝟐 + 𝜷𝜷𝒓𝒓�𝒗𝒗𝒓𝒓𝒓𝒓′′ �

𝟐𝟐 + 𝜷𝜷𝒔𝒔𝒓𝒓�𝒗𝒗𝒔𝒔𝒓𝒓′′ �
𝟐𝟐� 𝒅𝒅𝒔𝒔𝒅𝒅𝒓𝒓 

 
where 𝜶𝜶𝒔𝒔 and 𝜶𝜶𝒓𝒓 denote the elasticity, respectively, 𝜷𝜷𝒔𝒔 and 𝜷𝜷𝒓𝒓 are the corresponding rigidities, and 𝜷𝜷𝒔𝒔𝒓𝒓 is 
the resistance to twist.  
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The external energy 𝑬𝑬𝒆𝒆𝒂𝒂𝒊𝒊(𝒗𝒗)  is the image force of the boundary. In this work, the EI model is 
modified from the 3D surface (EI model) to 3D matrix of contour point by setting the boundary of 
𝑰𝑰𝑬𝑬𝑰𝑰(𝒂𝒂,𝒃𝒃, 𝒄𝒄) = 𝟏𝟏 and the inner and outer of a closed parametric surface (EE model) are set as 0. The 
𝑬𝑬𝒆𝒆𝒂𝒂𝒊𝒊(𝒗𝒗) represents by 𝑬𝑬𝒊𝒊𝒊𝒊𝒂𝒂𝒊𝒊𝒆𝒆(𝒗𝒗). 𝑬𝑬𝒊𝒊𝒊𝒊𝒂𝒂𝒊𝒊𝒆𝒆(𝒗𝒗)  shows the features of the EI model such as the boundary 
and represented it by potential force fields or the gradient of the image 𝛁𝛁𝒑𝒑(𝒗𝒗,𝒇𝒇) under the closed plane 
conditions. Next, the energy (𝑬𝑬 = 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗) + 𝑬𝑬𝒆𝒆𝒂𝒂𝒊𝒊(𝒗𝒗)) is minimized by using the Euler-Lagrange 
equation to find the v that satisfies the equation balances the internal force and image force. When all 
energies are balanced, the total energy is minimum as shown. 

 

�𝜶𝜶𝒔𝒔�𝒗𝒗𝒔𝒔′ �
𝟐𝟐 + 𝜶𝜶𝒓𝒓�𝒗𝒗𝒓𝒓′ �

𝟐𝟐� − �𝜷𝜷𝒔𝒔�𝒗𝒗𝒔𝒔𝒔𝒔′′ �
𝟐𝟐 + 𝜷𝜷𝒓𝒓�𝒗𝒗𝒓𝒓𝒓𝒓′′ �

𝟐𝟐 + 𝜷𝜷𝒔𝒔𝒓𝒓�𝒗𝒗𝒔𝒔𝒓𝒓′′ �
𝟐𝟐� = −𝛁𝛁𝒑𝒑(𝒗𝒗,𝒇𝒇) 

 
The internal energy 𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗) and its minimizing equation are set by using the 3D mesh of EE model. 

The characteristic of the internal force is to control the expanding motion of the parametric curve. The 
weighted parameters such as  𝜶𝜶 and 𝜷𝜷 are used to control the tension and rigidity of the parametric curve. 
Figure 4 shows examples of when the energy is over controlled and cannot stop at the boundary. 

 
Figure 4 Examples when the magnitudes of weighted parameters are unbalanced. 
 
 

To solve this problem as shown in Figure 4, the weighted parameters of the contour and image are 
estimated based on the conditions for each model calculated by Zratio equation. The internal energy 
𝑬𝑬𝒊𝒊𝒊𝒊𝒊𝒊(𝒗𝒗)  discourages stretching and bending of the contour while the image potential force pulls, pushing 
the contour toward the desired image boundary. The effect of shape and size of lung is used the adaptive 
parameter technique to find the suitable parameter. Due to the complexity of the parametric contour and 
the potential force fields, the parameters are allowed to adapt, depending on the individual shape of a lung 
as shown in Figure 5. Therefore, the additional step before applying 3D ACM is to measure the diameter 
of the lung in 𝒂𝒂,𝒃𝒃, 𝒄𝒄 directions. The 𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 is introduced to distinguish the different sets of shape 
(represented by range) estimated by the ratio of diameter EI to EE on the Z-axis as shown in Zratio 
equation. The shape and size of lung is separated in to 3 sets based on the data set of this study and then 
the weighted parameters are assigned each set called 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏, 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐 ,and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑. When the 
𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 is higher than 1.2, 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏 is applied, the challenge of 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏 is the sharp edge in the lower 
lung, the balloon force and GVF are tuned. 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐 represents the normal or slightly abnormal lungs 
where 𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 is between 1 to 1.2.  𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑 is the abnormality cases where mostly appears in patient with 
air trapping problem (obstructive lung disease). Figure 5 also demonstrates the 3D models at 3 different 
ranges of diameter. The 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝒔𝒔 consists of the weight of the image edge energy, image force, Gradient 
Vector Flow, and snake energies. They control the expanding and stop conditions of the deformable 
model from reaching the outer boundary. 
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𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 is estimated by;  
 

𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 =  
|𝐦𝐦𝐦𝐦𝐦𝐦(𝑬𝑬𝑰𝑰. 𝒄𝒄) −𝐦𝐦𝐦𝐦𝐦𝐦 (𝑬𝑬𝑰𝑰. 𝒄𝒄)|

|𝐦𝐦𝐦𝐦𝐦𝐦(𝑬𝑬𝑬𝑬. 𝒄𝒄) −𝐦𝐦𝐦𝐦𝐦𝐦 (𝑬𝑬𝑬𝑬. 𝒄𝒄)| 

 
where |𝐦𝐦𝐦𝐦𝐦𝐦(𝑬𝑬𝑰𝑰. 𝒄𝒄) −𝐦𝐦𝐦𝐦𝐦𝐦 (𝑬𝑬𝑰𝑰. 𝒄𝒄)| represents the diameter in Z direction of EI model and |𝐦𝐦𝐦𝐦𝐦𝐦(𝑬𝑬𝑬𝑬. 𝒄𝒄) −
𝐦𝐦𝐦𝐦𝐦𝐦 (𝑬𝑬𝑬𝑬. 𝒄𝒄)| is the diameter in Z direction of EE model. The weighted parameter function depends on the 
range of 𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓as explained below: 
 

𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 =  �
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏,                           𝒂𝒂 ≥ 𝟏𝟏.𝟐𝟐
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐,                    𝟏𝟏 < 𝒂𝒂 < 𝟏𝟏.𝟐𝟐
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑,                               𝒂𝒂 ≤ 𝟏𝟏

 

 
 

 
Figure 5 𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 estimation from EI and EE models and examples of a dataset with 3 different parameter 
function: 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏  , 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐, and 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑. 
 

 
The Balloon Force and Gradient Vector Flow (GVF) are mainly adjusted because these two forces 

help control the surface to reach the outer boundary and supervise the inflation force to be stopped by the 
outer edges. The velocity vector is measured from the corresponding points on the EE model, represented 
by 3D mesh format, called FV model. The structure of 𝑭𝑭𝑭𝑭 contains 𝑭𝑭𝑭𝑭.𝒇𝒇𝒂𝒂𝒄𝒄𝒆𝒆𝒔𝒔 with a facelist (𝑵𝑵 ×
𝟑𝟑) and 𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔 with an (𝑵𝑵 × 𝟑𝟑) vertex list. The velocity vector map is generated by the 
accumulation of motion of the parametric contour as shown:  

 
𝒅𝒅(𝒂𝒂′,𝒃𝒃′, 𝒄𝒄′:𝒂𝒂,𝒃𝒃, 𝒄𝒄) = �(𝒂𝒂′ − 𝒂𝒂)𝟐𝟐 + (𝒃𝒃′ − 𝒃𝒃)𝟐𝟐 + (𝒄𝒄′ − 𝒄𝒄)𝟐𝟐 

 
The magnitude and direction from 𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔 to 𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔′ is a velocity vector where 

𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔′ is the stopping point (EI phase) and FV.vertices’ is the starting point (EE phase). In this 
research, 𝒅𝒅(∆𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔) is used to analyze the inhomogeneous motion pattern of lung. The velocity 
vector map calculated by 𝒅𝒅(∆𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔) is managed as a feature of the classification model. 

The human lungs are divided into 5 distinct anatomic compartments called lobes which are 
separated by the pulmonary fissures. The lung lobe separation is applied to identify the characteristics that 
predominate in each lobe. Point-based registration of oblique fissures and horizontal fissures are based on 
anatomical characteristics of an individual lung. It is shown in the literature [13] that fissures appear 
naturally as a 3D surface separating adjacent lung lobes. Then, they combined the segmentation in 2D and 
3D as a hybrid approach to fill in an incomplete and disrupted fissure automatically. However, in this 
study, the approximate cutting plane of each lobe is used. The left lung has the upper (𝑳𝑳𝑳𝑳𝑳𝑳) and lower 
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(𝑳𝑳𝑳𝑳𝑳𝑳) lobes as𝑳𝑳𝑳𝑳𝒊𝒊𝒊𝒊𝑳𝑳𝒆𝒆𝒇𝒇𝒊𝒊 = {𝑳𝑳𝑳𝑳𝑳𝑳,𝑳𝑳𝑳𝑳𝑳𝑳} , which are divided by the oblique or major fissure (𝑳𝑳𝑳𝑳𝑭𝑭) as  
𝑳𝑳𝒃𝒃𝑶𝑶𝒊𝒊𝑶𝑶𝑳𝑳𝒆𝒆 𝒇𝒇𝒊𝒊𝒔𝒔𝒔𝒔𝑳𝑳𝒓𝒓𝒆𝒆𝑶𝑶𝒆𝒆𝒇𝒇𝒊𝒊 = 𝑳𝑳𝑳𝑳𝑭𝑭(𝑳𝑳𝑳𝑳𝑭𝑭𝟏𝟏,𝑳𝑳𝑳𝑳𝑭𝑭𝟐𝟐,𝑳𝑳𝑳𝑳𝑭𝑭𝟑𝟑). 

The right lung has the upper (𝑷𝑷𝑳𝑳𝑳𝑳), middle (𝑷𝑷𝑷𝑷𝑳𝑳), and lower (𝑷𝑷𝑳𝑳𝑳𝑳) lobes as  
𝑳𝑳𝑳𝑳𝒊𝒊𝒊𝒊𝑷𝑷𝒊𝒊𝒊𝒊𝑹𝑹𝒊𝒊 = {𝐑𝐑𝐑𝐑𝐑𝐑,𝐑𝐑𝐑𝐑𝐑𝐑,𝐑𝐑𝐑𝐑𝐑𝐑}. The upper and middle lobes are separated by the horizontal or minor 
fissure (𝑷𝑷𝑹𝑹𝑭𝑭); both upper and middle lobes are separated from the lower lobe by the right oblique 
(major) fissure (𝑷𝑷𝑳𝑳𝑭𝑭) as shown: 
 

𝑳𝑳𝒃𝒃𝑶𝑶𝒊𝒊𝑶𝑶𝑳𝑳𝒆𝒆 𝒇𝒇𝒊𝒊𝒔𝒔𝒔𝒔𝑳𝑳𝒓𝒓𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝑹𝑹𝒊𝒊 = 𝑷𝑷𝑹𝑹𝑭𝑭(𝑷𝑷𝑹𝑹𝑭𝑭𝟏𝟏,𝑷𝑷𝑹𝑹𝑭𝑭𝟐𝟐,𝑷𝑷𝑹𝑹𝑭𝑭𝟑𝟑),𝑷𝑷𝑳𝑳𝑭𝑭(𝑷𝑷𝑳𝑳𝑭𝑭𝟏𝟏,𝑷𝑷𝑳𝑳𝑭𝑭𝟐𝟐,𝑷𝑷𝑳𝑳𝑭𝑭𝟑𝟑) 
 

The cutting plane is generated and then the cuboid is created to select the region of interest (ROI). 
To localize the cutting plane, there are three landmark points as explained above. To create the plane, the 
normal vector 𝒊𝒊��⃑ = [𝒂𝒂,𝒃𝒃, 𝒄𝒄] needs to be determined by crossing two vectors on the plane (𝒂𝒂𝒂𝒂 + 𝒃𝒃𝒃𝒃 +
𝒄𝒄𝒄𝒄 + 𝒅𝒅 = 𝟎𝟎). After we obtain the cutting plane, the angle of rotation can be calculated. For the process of 
the angle of rotation [14], it is found that on sagittal views, the oblique and horizontal fissures are 
oriented at approximately 45 degrees and 90 degrees, respectively, with respect to the Z-axis. The point 
cloud data is rotated, based on the degree of rotation, to select the ROI. 

For the lung lobe separation of the left lung, the step to generate the cutting plane and cuboid ROI 
of the left lung. Right lung separation is complicated than the left lung separation because it consists of 
two fissures: RHF and ROF. Firstly, the ROF is performed by cutting RLL out of RUL and RML. 
Secondly, the RHF is made and cuts the RUL and RML. 
 

Feature analysis and classification 
The velocity vector map calculated by 𝒅𝒅(∆𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔) is used to analyze the expanding motion 

of lung. After applying lung lope separation, there are 5 sets of lung lopes:  
𝑳𝑳𝑳𝑳𝒊𝒊𝒊𝒊𝑳𝑳𝒆𝒆𝒇𝒇𝒊𝒊 = {𝑳𝑳𝑳𝑳𝑳𝑳,𝑳𝑳𝑳𝑳𝑳𝑳} and 𝑳𝑳𝑳𝑳𝒊𝒊𝒊𝒊𝑷𝑷𝒊𝒊𝒊𝒊𝑹𝑹𝒊𝒊 = {𝑷𝑷𝑳𝑳𝑳𝑳,𝑷𝑷𝑷𝑷𝑳𝑳,𝑷𝑷𝑳𝑳𝑳𝑳}. The complex features are simplified by 
using bag-of-words (BOW) model to represent in the same dimension. The velocity vector with a 
different number of control points is applied to the BOW model to simplify the dimensional information 
into an accumulated histogram represented by 𝒅𝒅(∆𝑭𝑭𝑭𝑭.𝒗𝒗𝒆𝒆𝒓𝒓𝒊𝒊𝒊𝒊𝒄𝒄𝒆𝒆𝒔𝒔). The vector set of lung lobes are 
obtained called visual velocity vectors. After that the normalization (𝒂𝒂′𝒊𝒊 = �  𝒂𝒂𝒊𝒊−𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊

𝒂𝒂𝒊𝒊𝒂𝒂𝒂𝒂−𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊
  � (𝒂𝒂′𝒊𝒊𝒂𝒂𝒂𝒂 −

𝒂𝒂′𝒊𝒊𝒊𝒊𝒊𝒊) + 𝒂𝒂′𝒊𝒊𝒊𝒊𝒊𝒊) is applied to each visual velocity vectors in order to deal with distribution of data where 
𝒂𝒂′𝒊𝒊 is the actual input feature, 𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 and 𝒂𝒂𝒊𝒊𝒂𝒂𝒂𝒂 are the minimum and maximum value of input feature and 
𝒂𝒂′𝒊𝒊𝒊𝒊𝒊𝒊 and 𝒂𝒂′𝒊𝒊𝒂𝒂𝒂𝒂 are the minimum and maximum target range of input feature which is [0,1]. Next, the 
machine learning techniques are: Artificial Neural Network (ANN), and Support Vector Machine (SVM).   

In the ANN model, the number of hidden layers (NL) is set as 20 based on the 𝑵𝑵𝒊𝒊 and 𝑵𝑵𝒓𝒓. For the 
number of hidden neurons (𝑵𝑵𝑵𝑵), there are many rules of thumb for calculating 𝑵𝑵𝑳𝑳 such as method [17] 
𝑵𝑵𝒊𝒊 = �𝑵𝑵𝒊𝒊𝑵𝑵𝒓𝒓  where the input neuron and output neuron represent by 𝑵𝑵𝒊𝒊 and 𝑵𝑵𝒓𝒓, method [16], 𝑵𝑵𝒊𝒊 =

𝟐𝟐𝑵𝑵𝒊𝒊 − 𝟏𝟏, method [15], 𝑵𝑵𝑹𝑹 = 𝟐𝟐𝑵𝑵𝒊𝒊

𝑵𝑵𝒊𝒊
+ 𝟏𝟏. In this research, we optimize the performance and 𝑵𝑵𝒊𝒊 = �𝑵𝑵𝒊𝒊𝑵𝑵𝒓𝒓 +

𝟏𝟏 is used for setting the hidden neurons. The activation function of output layer is TanH function 
(𝑻𝑻𝒂𝒂𝒊𝒊𝑹𝑹 = 𝟐𝟐

𝟏𝟏+𝒆𝒆−𝟐𝟐𝒂𝒂
− 𝟏𝟏) which has range values between (0,1). The SVM model with Radial Basis 

Function (RBF) kernel function 𝑲𝑲(𝒂𝒂,𝒂𝒂′) = 𝐞𝐞𝐦𝐦𝐞𝐞 (−𝜸𝜸𝑷𝑷𝑹𝑹𝑭𝑭�𝒂𝒂 − 𝒂𝒂′�𝟐𝟐) is selected. The �𝒂𝒂 − 𝒂𝒂′�𝟐𝟐 is the 
squared Euclidean distance between 2 feature vectors. The gamma value (𝜸𝜸𝑷𝑷𝑹𝑹𝑭𝑭) of the RBF kernel 
function is equal to 12. The 𝜸𝜸𝑷𝑷𝑹𝑹𝑭𝑭 is the invert of standard deviation of the Gaussian function  𝜸𝜸𝑷𝑷𝑹𝑹𝑭𝑭 =  𝟏𝟏

𝟐𝟐𝝈𝝈𝟐𝟐
 

. If 𝜸𝜸𝑷𝑷𝑹𝑹𝑭𝑭 is too small, the hyper plane is almost flat and when the gamma is too high, the variance of 
distribution is small.  

To predict the output in supervised machine learning (ML), the labels are set at 0 and 1 (0 = healthy 
and 1 = abnormal). The result is explained by the confusion matrix, and the performance of the 
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classification process is evaluated using 10-fold cross-validation by separating into 10 folds with 10 % for 
testing and 90 % for training. The predictive model is separated into two sub-modules. The first module 
classifies the normal and abnormal cases by using the 𝒁𝒁𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓 and 𝒀𝒀𝒓𝒓𝒂𝒂𝒊𝒊𝒊𝒊𝒓𝒓, combined with the motion 
feature of each lung lobe. Secondly, lung diseases are divided into obstructive and restrictive a pattern 
using Module 2. To separate the obstructive and restrictive patterns, the inspiratory and expiratory phases 
of healthy people are used to analyze the similarity of abilities to expand and shrink, based on the relevant 
knowledge of PFTs, FVC, FEV1, TLC, and FEV1/FVC ratio. 

 
Results and discussion  

 The confusion matrix is used to evaluate the performance of the predictive model by accumulating 
the results from Module 1 and Module 2. The Weighted Average Precision (𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴) is used to overcome 
the unbalanced data problem. To interpret, the confusion matrix in medical use is slightly different from 
the usual situation. The definition of each element needs to be clarified as follows: True Positive (TP) is 
when the patient has a lung disease, and the model correctly predicts, True Negative (TN) is when the 
patient is healthy, and the model correctly predicts, False Positive (FP) is when the patient is healthy, but 
the model predicts as lung disease, False Negative (FN) is the patient has a lung disease, but the model 
cannot detect and predicts as healthy. All measurement terms are used to analyze the effectiveness of the 
model from sensitivity (SENS), specificity (SPEC), and precision (PRE). The sensitivity (SENS) is the 
rate of TP over all of actual class (𝑁𝑁𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎_𝑎𝑎𝑎𝑎𝑙𝑙𝐴𝐴) where 𝑁𝑁𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎_𝑎𝑎𝑎𝑎𝑙𝑙𝐴𝐴 calculated by 𝑁𝑁𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎_𝐿𝐿𝑎𝑎𝑙𝑙𝐴𝐴 = 𝑇𝑇𝑃𝑃 +
𝐹𝐹𝑁𝑁. The SENS formula is 𝑆𝑆𝑃𝑃𝑁𝑁𝑆𝑆 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
. The specificity (SPEC) is the rate of TN over all of actual class 

of healthy (𝑁𝑁𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎_ℎ𝑒𝑒𝑟𝑟𝑎𝑎𝑟𝑟ℎ𝑦𝑦 ) where 𝑁𝑁𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎𝑟𝑟𝑎𝑎_ℎ𝑒𝑒𝑟𝑟𝑎𝑎𝑟𝑟ℎ𝑦𝑦 = 𝑇𝑇𝑁𝑁 + 𝐹𝐹𝑃𝑃. It is defined as 𝐶𝐶 = 𝑇𝑇𝐹𝐹
𝑇𝑇𝐹𝐹+𝐹𝐹𝑇𝑇

 . The precision 

(PRE) is the rate of TP over all positive events. It is defined 𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇

 .    Due to the unbalanced-
data, the performance measure is used in the weighted average technique. Weighted Average Precision 
(𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴) is used as 𝑃𝑃𝑃𝑃𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑤𝑤𝑖𝑖−1×𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1+𝑤𝑤𝑖𝑖×𝑇𝑇𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖

𝑤𝑤𝑖𝑖−1+𝑤𝑤𝑖𝑖
 ,where 𝑤𝑤𝑟𝑟 represents the number of data points in 

each class, where 𝑖𝑖 is class number. 
 

Classification results 
The classification model consists of predictive hierarchy modules (2 layers). Module 1 classifies 

normal and abnormal lungs. Module 2 separates obstructive and restrictive lung patterns. Evaluation of 
Module 1: Classify normal and abnormal respiratory patterns of lungs. The total number of data is 120 
sets which 80 sets are abnormal, and 40 sets are normal. The K-fold cross-validation is applied to separate 
training and testing sets. The selected features are the histogram of the velocity vectors for each lobe, 
𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. The stepwise regression is applied to reduce the feature dimensions and then the ANN 
and SVM are selected as classifier techniques to analyze the normal and abnormal cases. The PREnormal 
and PREabnormal are calculated for normal and abnormal classes. Due to the unbalanced data, the PREAVG is 
evaluated to find the performance for each model. They show that PREAvg of module 1 is 84.07 % with 
ANN, and 85.66 % with SVM technique. The FP is 8.33 % and the FN is 5.83 - 7.5 %. The SENSs of 
ANN and SVM are 88.75 and 91.25 %, respectively and the SPEC is 75 %. 
 Evaluation of Module 2: Two different types of lung disease are classified by learning the pattern of 
inspiratory from the normal data, the histogram of the velocity vectors for each lobe, 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, and 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 
Based on the hierarchy predictive model, the total data for Module 2 is 80 sets with 40 obstructive and 40 
restrictive patterns. The K-fold cross-validation and stepwise regression are applied and then ANN and 
SVM is used to compare the performance of the module as shown in Table 2. They show that the PREAvg 
of ANN is 87.91 % and PREAvg of SVM is 82.34 %. The confusion matrix of Module 2 is changed by 
setting TP is a restrictive pattern and the model predicts correctly, TN is an obstructive pattern and the 
model predicts correctly, FP is obstructive pattern, but the model predicts as restrictive pattern, and FN is 
a restrictive pattern, but the model detects an obstructive pattern. From Table 2, Module 2 of ANN and 
SVM has the FP at 7.5 - 8.75 % and the FN at 10 - 12.5 %. The SENSs of ANN and SVM are 75 and 80 
% and the SPECs are 82.4 and 84.62 %, respectively. 
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Table 2 Evaluation results of Module 1 (PRE0 represents normal and PRE0 represents abnormal) and 
Module 2 (PRE0 represents obstructive and PRE1 represents, restrictive). 
 
Module Models Confusion Matrix Evaluation 

 TP TN FP FN PRE0 PRE1 PREAVG 
Module 1 ANN 71 30 10 9 87.65 76.92 84.07 

SVM 73 30 10 7 87.95 81.08 85.66 
Module 2 ANN 30 33 7 10 81.08 76.74 78.91 

SVM 32 33 6 8 84.20 80.48 82.34 
 
 

In addition, Module 2 is related to the pathological knowledge of restrictive and obstructive lung 
diseases. The restrictive lung disease happens when the patient cannot take a full and deep inhalation. 
Therefore, when comparing the normal size of a lung in EI CT images, a patient with restrictive lung 
disease can be differentiated from a normal patient. In the obstructive lung disease, the patient has a 
problem with exhalation. Patients cannot exhale naturally because there is a blocked area in the small 
airway or bronchus. The predictive model that is used to classify obstructive lung diseases is the EE CT 
images of a normal patient and an obstructive lung disease patient. It is found that the restrictive pattern 
has more false predictions than the obstructive pattern. However, the limitations of the classification are 
the variety of disease severities.  
 

Conclusions 

This work introduces a new motion detection of the lung using a velocity vector map-generating 
from the 3D ACM technique and studies inhomogeneous motion patterns from each lung lobe to generate 
predictive models for the automatic screening of lung disease. The velocity vectors of the EI and EE 
models are evaluated by the corresponding points on the parametric surface model of the EE model to the 
EI model. In the 3D ACM, the external energy from the EI model is the external force that pushes the 3D 
parametric surface to reach the boundary. The external forces, such as the balloon force and GVF, are 
adjusted adaptively by the shape conditions (𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) which is calculated from the ratio of the diameter 
from EI to EE on the Z axis. Next, the feature representation is studied and evaluated based on the lung 
structure, separated into five lobes. ANN and SVM techniques are applied to classify those patterns to 
screen the lung diseases into normal, obstructive, and restrictive patterns. 

In conclusion, the inhomogeneous motion patterns of lungs combined with medical-based 
knowledge can be used to analyze lung diseases. However, the limitations of this work are the amount of 
data and the level of severity of diseases. Therefore, misclassification may occur in the early stages of 
lung diseases which motion patterns cannot observe. For future works, we plan to increase the amount of 
data and the variety of the severity of diseases to improve the performance of the classification model. 
We also plan to increase the accuracy by finding more relative points of EE and EI inhomogeneous 
motion, studying feature representation and feature selection, and increasing the number of databases. 
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