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Abstract 

A direct method, called the functional variable method, has been used to construct the exact 
solutions of nonlinear evolution equations (NLEEs) in mathematical physics. To illustrate the validity and 
advantages of this method, the (2+1) dimensional Boussinesq-Kadomtsev-Petviashvili (BKP) equations 
and the new coupled Konno-Oono (KO) equations are considered. The obtained solutions contain an 
explicit function of the variables in the considered equations. It has been shown that the method provides 
a powerful mathematical tool for solving NLEEs in mathematical physics and engineering fields without 
the help of a computer algebra system. 
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Introduction 

Phenomena in the real world are often described by nonlinear evolution equations (NLEEs). To 
understand the physical mechanism of phenomena in nature, described by NLEEs, exact solutions for the 
NLEEs have to be explored. Exact solutions of NLEEs play an important role in the proper understanding 
of qualitative features of many phenomena and processes in various areas of natural science. It is 
significant that many equations of physics, chemistry, and biology contain empirical parameters or 
empirical functions. Exact solutions allow researchers to design and run experiments, by creating 
appropriate natural conditions, to determine these parameters or functions. Therefore, searching for exact 
solutions of NLEEs play an important role in the study of physical phenomena and gradually becomes 
one of the most important and significant tasks. However, not all equations posed of these models are 
solvable. Thus, new methods for deriving exact solutions for the governing equations have to be 
developed. As a result, many new techniques have been successfully developed by diverse groups of 
mathematicians and physicists, such as, the functional variable method [1-9], the modified simple 
equation method [10-13], the Kudryashov method [14], the Exp-function method [15-18], the Homotopy 
perturbation method [19,20], the (G'/G)-expansion methods [21-25], the traveling wave hypothesis [26], 
the sine-cosine method [27], the exp(-Φ(ξ))-expansion method [28], transformed rational function method 
[29], multiple exp-function algorithm [30], generalized Hirota bilinear method [31,32], homotopy 
analysis method [33-38], and so on. 

In soliton theory, there are many famous methods and skills to deal with the problem of solitary 
wave solutions for NELEs. With the development of computer science, recently, direct searching for 
exact solitary wave and soliton like solutions to NLEEs has attracted much attention. This is due to the 
availability of symbolic computation systems like Maple, Matlab or Mathematica which enable us to 
perform complex and tedious computations on the computer. 

From our point of view, all the methods have some merits and detriments with respect to the 
problem considered and there is no unified method that can be used to deal with all types of NLEEs. That 
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is why anytime an improvement is made on a particular method to allow it to recover some new solutions 
to the NLEEs, it is always welcomed. 

Based on the observation that it has been a successful idea to generate exact solutions of nonlinear 
wave equations in mathematical physics by reducing partial differential equations into ordinary 
differential equations, recently, Zerarka et al. [1] proposed a new direct method called the functional 
variable method. 

The objective of this article is to apply the functional variable method to construct the exact 
solutions for nonlinear evolution equations in mathematical physics via the BKP equation and KO 
equation. 
 
Algorithm of the functional variable method 

Suppose that a nonlinear equation, say in 2 independent variables x and t is given; 
 
( ) 0,,,,,, =xtxxttxt uuuuuuF ,                                         (1) 

 
where F  is a polynomial in u(x, t) and its partial derivatives. 

The main steps of this method are as follows [1-9]: 
Step 1 To find the traveling wave solutions of Eq. (1) we introduce the wave variable tx ωξ ±= , so 

that )(),( ξutxu = , where { }0−ℜ∈ω  is the wave velocity, to reduce Eq. (1) to the following 
ordinary differential equation (ODE); 
 
( ) 0,,,, =ξξξξξξ uuuuX ,                        (2) 

where X  is a polynomial in ( )ξu  and its derivatives, whereas 2

2

,
ξξ ξξξ d

udu
d
duu == , and so on. 

Step 2 We make a transformation in which the unknown function ( )ξu  is considered as a functional 
variable in the form; 
 

( )uYu =ξ ,                                  (3) 
 
and some successive derivatives of ( )ξu  are as follows; 
 

( )′=′= 2

2
1 YYYu ξξ , 

( ) ( ) 222

2
1

2
1 YYYYu ″

=
″

=ξξξ , 

( ) ( ) 





 ′″

+′′′= 2222

2
1)(

2
1 YYYYuξξξξ ,                       (4) 

...  ...  ...  ...  ...  
 

where 2

2

,
du

YdY
du
dYY =′′=′ and so on. 
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Step 3 We substitute Eqs. (3) and (4) into Eq. (2) to reduce it to the following ODE; 
 
( ) 0,,,, =′′′

YYYuQ ,                         (5) 
 
Step 4 The key idea of Eq. (5) is of special importance because it admits analytical solutions for a large 
class of nonlinear wave equations. After integration, the Eq. (5) provides the expression of Y , and this in 
turn together with (3) gives the appropriate solutions to the original wave equations. In order to illustrate 
how the method works we examine some examples in the following section which are already treated by 
other methods. 
 
Applications of the functional variable method 

Example 1 The (2+1) dimensional Boussinesq-Kadomtsev-Petviashvili equation: Now we will 
apply the functional variable method to find exact solutions and then the solitary wave solutions to the 
BKP equations in the form [39]; 
 

yxyyyxxxt

yx

xy

qvuqqqq
qv
qu

)(6)(6 +++=

=

=

                                            (6) 

 
Now let us suppose the traveling wave transformation equation is; 
 

)(),,( ξutyxu = , )(),,( ξvtyxv = , )(),,( ξqtyxq = , tyx ωξ −+= .              (7) 
 
Eq. (7) reduces Eq. (6) to the following ODEs; 
 

ξξ qu = ,                                                          (8) 
 

ξξ qv = ,                                                              (9) 
 

ξξξξξξξξξω )(6)(6 qvuqqqq +++=− .                                (10) 
 
Integrating Eqs. (8) - (10) once with respect toξ , setting the constants of integration to zero, yields the 
following simplified forms; 
 

qu = ,                                                       (11) 
 

qv = ,                                               (12) 
 

qvuqqq 662 ++=− ξξω .                          (13) 
 
Combining Eqs. (11) and (12) with Eq. (13) yields; 
 

2122 qqq −−= ωξξ .                     (14) 
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Following Eq. (4), it is effortless to deduce from Eq. (14) an expression for the function )(qY ; 
 

( ) 22 12qqY −−=
′

ω .                      (15) 
 
After integrating Eq. (15) regarding the constant of integration to zero, yields; 
 

( ) 





 +−= qqqY

ω
ω 81
2

.                    (16) 

 
Now applying Eq. (3) into Eq. (16), we obtain; 
 







 +−= qqq

ω
ω

ξ
81

2
.                       (17) 

 
Separating the variables in Eq. (17) and then integrating, by setting the constant of integration to zero, we 
obtain; 
 

 ξω

ω

d
qq

dq
281

−=







 +

∫ .                        (18) 

 
After completing the integration of Eq. (18), we have the following exact traveling wave solutions 

of BKP equations: 
Case 1 If 0<ω  , we obtain the following hyperbolic traveling wave solutions; 
 

( )







−+

−
−=== tyxhtyxvtyxutyxq ωωω

22
1sec

8
),,(),,(),,( 2

111 ,              (19) 

 

( )







−+

−
=== tyxhtyxvtyxutyxq ωωω

22
1csc

8
),,(),,(),,( 2

222 .                  (20) 

 
Case 2 If 0>ω  we obtain the following hyperbolic traveling wave solutions; 
 

( )







−+−=== tyxtyxvtyxutyxq ωωω

22
1sec

8
),,(),,(),,( 2

333 ,                   (21) 

( )







−+−=== tyxtyxvtyxutyxq ωωω

22
1csc

8
),,(),,(),,( 2

444 .                   (22) 
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Remark 1 All the obtained results has been checked with Maple by putting them back into the original 
equations and were found to be correct. 

Example 2 The new coupled Konno-Oono equations: Now we will bring to bear the functional 
variable method to find exact solutions and then the solitary wave solutions of coupled Konno-Oono 
equations in the form [40]; 
 

02 =− vuu tx ,                                       (23) 
 

02 =+ xt uuv .                                       (24)  
 
Now let us suppose that the traveling wave transformation equation is; 
 
( ) ( )txuu ,=ξ , ( ) ( )txvv ,=ξ , tx ωξ −= .                                   (25) 

 
Eq. (25) reduces Eqs. (23) and (24) to the following ODEs; 
 

02 =−− vuuξξω ,                                   (26) 
 

02 =+− ξξω uuv .                                    (27)  
 
By integrating Eq. (27) with respect toξ , we obtain; 
 

( )duv += 21
ω

,                                           (28) 

 
where d  is a constant of integration. 

Eq. (28) reduces Eq. (27) to the following form; 
 

022 32 =++ uduuξξω .                                    (29) 
 
Following Eq. (4), it is easy to deduce from (29) an expression for the function )(uY ; 
 

( ) ( )3
2

2 222 uudY +−=
′

ω
.                     (30) 

 
Integrating Eq. (30) and neglecting the constant of integration, we obtain; 
 







 +

−
= 2

2
112)( u
d

uduY
ω

.                    (31) 

 
Now combining Eq. (3) with Eq. (31) yields; 
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





 +

−
= 2

2
112 u
d

udu
ωξ .                    (32) 

 
Separating the variables in Eq. (32) and then integrating, we obtain the solution of coupled Konno-Oono 
equations as follows; 
 

( ) ( )







+

−
±= 0

2csc2 ξξ
ω

ξ dhdu ,                            (33) 

 

( ) ( )







+

−
±= 0

2sec2 ξξ
ω

ξ dhdIu ,                       (34) 

 
where 0ξ  is a constant of integration. 

Now for 0<d , we can easily determine the following hyperbolic traveling wave solutions of Eq. (29); 
 

( ) ( )







+−

−
±= 01

2csc2, ξω
ω

txdhdtxu ,                      (35)

( ) ( )







+−

−
±= 02

2sec2, ξω
ω

txdhdItxu .                     (36) 

 
Following Eq. (28); Eqs. (35) and (36) provide the following traveling wave solutions; 
 

( ) ( )
ω

ξω
ωω

dtxdhdtxv +







+−

−
= 0

2
1

2csc2, ,                                (37) 

 

( ) ( )
ω

ξω
ωω

dtxdhdtxv +







+−

−
−= 0

2
2

2sec2, .                  (38) 

 
Again, for 0>d , we can easily determine the following periodic traveling wave solutions; 
 

( ) ( )







+−±= 03

2csc2, ξω
ω

txddtxu ,                        (39)

( ) ( )







+−±= 04

2sec2, ξω
ω

txddItxu .                        (40) 

 
Following Eq. (28); Eqs. (39) and (40) yields; 
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( ) ( )
ω

ξω
ωω

dtxddtxv +







+−−= 0

2
3

2csc2, ,                       (41) 

 

( ) ( )
ω

ξω
ωω

dtxddtxv +







+−−= 0

2
4

2sec2, .                      (42) 

 
From the above obtained solutions we observe that 0≠d . 
 
Remark 2: All the obtained results have been checked with Maple by putting them back into the original 
equation and were found to be correct. 
 
Results and discussion 

In this section we will discuss the wave features of our obtained solutions.  
 
The (2+1) dimensional Boussinesq-Kadomtsev-Petviashvili equation 
The obtained solutions Eqs. (19) and (20) are solitary waves and Eqs. (21) and (22) are plane 

periodic waves, where the wave amplitude 
8
ω

−=A , wave number 
22

1 ω−
=k  and wave length 

Ak
ππλ 22

== . It is also clear that the wavelength is inversely proportional to square root of the 

amplitude A, i.e., 
A

1
∝λ . For the existence of the solitary wave 0<ω . On the other hand if 0>ω it 

provides periodic waves which are also traveling. 
The graphical demonstrations for 2 obtained solutions of BKP equations are shown in Figures 1 and 

2. 
 
 

 
Figure 1 Bell shaped soliton profile of Eq. (19) for 
wave speed 0,1 =−= yω  within the interval 

3,3 ≤≤− tx . 

 
Figure 2 Periodic Profile of Eq. (21) for wave 
speed 0,1 == yω  within the interval

5,5 ≤≤− tx . 
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The coupled Konno-Oono equations 
The obtained solutions Eqs. (35) - (38) are solitary waves and Eqs. (39) - (42) are plane periodic 

waves. For the existence of the solitary wave 0<d . For Eq. (35) the wave amplitude dA 2= , wave 

number 
ω

dk 2−
=  and wavelength 

A
I

k
ωππλ 22

−==  i.e., the wavelength is inversely 

proportional to the amplitude A, provides, 
A
1

∝λ . On the other hand if 0>d it provides periodic 

traveling waves. 
The graphical demonstrations for 2 obtained solutions of KO equations are shown in Figures 3 and 

4. 
 

 
Figure 3 Bell shaped soliton profile of Eq. (36) for 

1−=d , 1=ω , within the interval 
4,4 ≤≤− tx . 

 
Figure 4 Periodic profile of Eq. (40) for 

50.0=d , 1=ω , 1=k within the interval 
4,4 ≤≤− tx . 

 
 
Comparisons 

Comparisons with modified simple equation method 
Khan and Akbar [13] investigated exact solutions of the coupled KO equations by means of the 

modified simple equation method and obtained 4 solutions for both u and v (see Appendix A). On the 
contrary by using the functional variable method in this article we have obtained 4 solutions for both u 
and v. The solutions of all u for KO equations obtained by both the MSE and functional variable methods 
are different, but the v solutions are equivalent. We conclude that we have obtained some new solutions.  
Comparisons between Khan and Akbar [13] solutions by the MSE method and our solutions obtained by 
functional variable method are shown in the following table (only for v): 
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No. Solutions obtained by MSE method Khan and Akbar [13] Solutions obtained by functional variable method 

1. If we set dd 2−=  into the solution 1v  obtained by Khan and 
Akbar [13], then it becomes; 

 ( ) ( )








−

−
= txdhdtxv ω

ωω
2csc2, 2

1 . 

If we leave out the term d/ω and set ξ0=0 in our 
solution v1 then;

( ) ( )








−

−
= txdhdtxv ω

ωω
2csc2, 2

1 . 

2. If we set dd 2−=  into the solution 2v  obtained by Khan 
and Akbar [13], then it becomes; 

 ( ) ( )








−

−
−= txdhdtxv ω

ωω
2sec2, 2

2 . 

If we leave out the term d/ω and set ξ0=0 in our 
solution v2 then it becomes; 

( ) ( )








−

−
−= txdhdtxv ω

ωω
2sec2, 2

2 .

 

 

3. If we set dd 2−=  into the solution 1v  obtained by Khan and 
Akbar [13], then it becomes; 

 ( ) ( )








−−= txddtxv ω

ωω
2csc2, 2

3 . 

If we leave out the term d/ω and set ξ0=0 in our 
solution v3 then it becomes; 

( ) ( )








−−= txddtxv ω

ωω
2csc2, 2

3 . 

4. If we set dd 2−=  into the solution 1v  obtained by Khan and 
Akbar [13], then it becomes; 

 ( ) ( )








−−= txddtxv ω

ωω
2sec2, 2

4 .  

If we leave out the term d/ω and set ξ0=0 in our 
solution v1 then it becomes; 

( ) ( )








−−= txddv ω

ωω
ξ 2sec2 2

4 . 

 
 

Comparisons with extended mapping method 
Peng and Krishnan [41] investigated exact solutions of the coupled KO equations by means of the 

extended mapping method and obtained 5 jaccobi-elliptic function solutions which he converted into 
three hyperbolic function solutions for m⟶1 (see Appendix B). On the contrary by using the functional 
variable method in this article we have obtained four solutions of KO equations for both u and v. If we set 

dCdI 2,2 2 −== ωω into solution u4 = u5 obtained by Peng and Krishnan [41] and ωω −= , 

00 =ξ  into our solution 2u , we observe that our solution 2u  coincides with the solution u4 = u5 

obtained by Peng and Krishnan [41]. Other solutions are different. It means 3 of our solutions are newly 
obtained by means of the functional variable method. 
 
Conclusions 

The functional variable method has been successfully used to seek exact traveling wave solutions of 
the BKP equations and KO equations. The reliability of the method and the reduction in the use of 
computational domain give this method a wider applicability. Without the help of a computer algebra 
system all examples in this paper show the efficiency of the functional variable method. The solution 
procedure is very simple and the traveling wave solutions are expressed by hyperbolic functions, and 
trigonometric functions. It has been shown that the method provides a very effective and powerful 
mathematical tool for solving nonlinear equations in mathematical physics. Comparing with the other 
methods in the literature, the functional variable method appears to be easier and faster, without the help 
of a symbolic computation system. This work confirms that the method is direct, concise and effective. 
The method can be used for treating many other NLEEs in mathematical physics. 
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Appendix A 
 

Khan and Akbar [13] examined the exact solutions of the KO equations by using extended 
mapping method and found the following 3 hyperbolic function solutions; 
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Appendix B 

 
Peng and Krishnan [41] examined the exact solutions of the KO equations by using extended 

mapping method and found the following 3 hyperbolic function solutions for m⟶1; 
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