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Abstract 

The novel coronavirus 2019 (COVID-19) pandemic was declared a global health crisis. The real-
time accurate and predictive model of the number of infected cases could help inform the government of 
providing medical assistance and public health decision-making. This work is to model the ongoing 
COVID-19 spread in Thailand during the 1st and 2nd phases of the pandemic using the simple but 
powerful method based on the model-free and time series regression models. By employing the curve 
fitting, the model-free method using the logistic function, hyperbolic tangent function, and Gaussian 
function was applied to predict the number of newly infected patients and accumulate the total number of 
cases, including peak and viral cessation (ending) date. Alternatively, with a significant time-lag of 
historical data input, the regression model predicts those parameters from 1-day-ahead to 1-month-ahead. 
To obtain optimal prediction models, the parameters of the model-free method are fine-tuned through the 
genetic algorithm, whereas the generalized least squares update the parameters of the regression model. 
Assuming the future trend continues to follow the past pattern, the expected total number of patients is 
approximately 2,689 - 3,000 cases. The estimated viral cessation dates are May 2, 2020 (using Gaussian 
function), May 4, 2020 (using a hyperbolic function), and June 5, 2020 (using a logistic function), 
whereas the peak time occurred on April 5, 2020. Moreover, the model-free method performs well for 
long-term prediction, whereas the regression model is suitable for short-term prediction. Furthermore, the 
performances of the regression models yield a highly accurate forecast with lower RMSE and higher R2 
up to 1-week-ahead. 
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Introduction 

A novel coronavirus 2019, known as COVID-19, which was originated in Wuhan, China, in 
December 2019, has spread rapidly, resulting in around 1.6 million infected people and over 95,000 
deaths worldwide (as reported on April 11, 2020). Now, it has been declared a pandemic, which has 
adversely affected human health. Scientists are still creating an effective vaccine against this disease. The 
COVID-19 entered Thailand on January 12, 2020, with its first confirmed case (South China Morning 
Post, January 13, 2020). The situation is getting worse with the increasing infected rates, which has 
become serious due to a super-spreader event, the boxing match in a stadium in Bangkok (the capital city) 
on March 6, 2020. On April 7, 2020, the cases rose after some workers in Bangkok returned to their 
provinces after the government declared a curfew.  

Since the severe acute respiratory syndrome (SARS) (2003) and the Middle East respiratory 
syndrome (MERS) (2012), including COVID-19, are also coronaviruses, the infection distribution and the 
subsequent model for the dynamic spread could be similar. In various research [1-3], the transmission 
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models of these epidemics have been proposed to estimate the basic reproduction number. These models 
represent the expected number of patients directly generated by 1 case. Nonetheless, this parameter is 
only coarsely quantitative to assess the epidemic. In addition, Kermack and McKendrick have proposed 
the well-known susceptible-infectious-recovered (SIR) model [4] based on medical information. 
Recently, the susceptible-exposed-infectious-recovered (SEIR) model has been proposed to predict the 
number of COVID-19-patients [5]. However, these mathematical-based models, dealing with the ordinary 
differential equations-driven method and many idealistic assumptions, are not realistic and give 
inconsistent predictions. To address the problems, the predictive models, ranging from linear and simple 
to nonlinear and complex models, succeed in applying to predict the spread of SARS and MERS, such as 
[1-9], are developed for COVID-19 [10-12]. 

To avoid the difficulties while getting in time for predicting the ongoing spread of the COVID-19, 
this study applied two approaches: a model-free method and a multiple linear regression (MLR) model (1 
kind of machine-learning) due to their simplicity but acceptable accuracy. The model-free method is 
based on three explicit functions likely to be the results in epidemiology, namely the Gaussian function, 
hyperbolic-tangent function, and logistic function. Whereas the MLR model is based on the assumption 
that the future spread of infections depends on the number of infected people, some past data are well-
correlated and can be used to predict future data through statistical regression. In literature, for example, 
the Gaussian function has been used to model the spreading prediction epidemics [13]. Moreover, in [14-
16], the dynamic accumulations of the SARS patients have been fitted using the widely used Richard 
function among the growth-curve types. However, having many parameters, Richard's function is a 
disadvantage. Recently, the logistic function has been employed to forecast short-term daily accumulated 
COVID-19-infection cases [16]. Besides, the MLR model is used to predict the newly confirmed COVID-
19-patients [17]. From a review of the previous works, there is still no research for the prediction model 
of the COVID-19 epidemic in Thailand. During the outbreak, lacking a reliable prediction model leads to 
the inability to plan for short/long-term and control the infectious transmission. Apart from the right and 
practical measures, theoretical and quantitative analysis based on the predictive model is needed to 
predict the epidemic trend. The overall concept of this work is illustrated in Figure 1. Both the model-
free method and time series MLR model online perform predictions by projecting current and future 
trends using live reported data. For the model-free method, the Gaussian function describes the 
characteristics of the newly infected patients and estimates the cessation date. While the logistic and 
hyperbolic-tangent functions capture the epidemic growth rate and estimate the cessation date, including 
the total patients. Due to the numerical difficulties in solving parameters and selecting proper initial 
parameters used in previous research, this work is fine-tuned through the genetic algorithm (GA)-an 
evolutional search algorithm (DE Goldberg, 1989). For the regression models that treat some past values 
as the predictors, they respond to predict the trend of the newly infected patients and accumulations for a 
1-day, 1-week, and 1-month ahead. Their parameters are updated by the generalized least square (GLS) 
method.  

 

 
Figure 1 The overall framework for modeling COVID-19 prediction. 
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Materials and methods 

To make the COVID-19 prediction model happen in a timely manner, the newly infected patients 
and accumulated patient’s data are made openly available online, publicly by the department of disease 
control of Thailand through the official website https://covid19.th-stat.com/th/api. The data during 
January 1, 2020 to April 17, 2020, were used in training the proposed predictive models. The trends are 
depicted in Figure 2 by onset of infection. The characteristics of the newly infected patients followed the 
bell shape (Figure 2(a)). It is seen that after detecting the 1st confirmed patient on January 12, 2020, the 
viral spread appeared very slow for a while. When the 1st super-spreader occurred, the infected rate 
sharply reached the highest peak on March 22, 2020, and gradually declined after the curfew on April 3, 
2020. It can be suggested that this measure can highly restrict the spread of COVID-19. The spreading 
infection may explode unless the measures are not taken. Besides, the epidemic growth rate follows an S-
shaped curve (Figure 2(b)) where the 1st phase of the epidemic, characterized by the slow slope, 
continues to the 2nd phase of the epidemic, with a sharply increasing slope, on January 16, 2020.  

 
 

 
Figure 2 The trend of the number of new COVID-19 patients, and accumulations of Thailand. 
 
 

By assuming the entire pattern of trends can be mapped out, the model-free method and time series 
regression model used in this study detail as follows. For the model-free method, considering the trend of 
the newly infected patients (Figure 2(a)), it naturally increases at the initial and decreases after reaching 
the peak with some fluctuations. Here, the probability of newly infected patients is assumed to follow the 
Gaussian function, which is expressed as, 
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where t denotes the time as the dependent variable, l1, l2, and l3 are referred to the maximum number of 
infected patients, the peak date, and the dispersion close to or away from the peak date. The ending day of 
viral spread can be determined at the tail of the function reaching the nearest zero. 

For epidemiology, the S-shape-liked functions including logistic and hyperbolic-tangent functions, 
were mainly used to describe the growth of the infected patients (Figure 2(b)). The general mathematical 
expression of the logistic function is expressed as,  
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where j1, j2, and j3 are referred to the total number of patients at the ending period, the infected rate and 
the time at the maximum number of patients, respectively. Also, the ending day can be determined at the 
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day at which the number of patients is equal to j1 by rounding to the nearest integer. Whereas, the general 
mathematical expression of the hyperbolic-tangent function is expressed as,  
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where k1, k2, k3 and k4 are referred to the total number of infected patients at the ending period, the 
infected rate, inflection, and bias, respectively.  

In this work, the GA is employed to fine-tune the parameters of those functions of the free-model 
method for achieving accurate prediction models. It is based on evolutionary searching for the fittest 
survival and worked with the coding of the parameters combining the mechanic of natural selection and 
genetic processes, such as crossover, and mutation. The process of GA (Figure 3) comprises 4 steps 
detailed as follows.  

In step 1, the M-chromosome, composed of the genes represented the solution of parameters of 
functions (l’s or j’s or k’s), including some of the GA’s parameters (the probability of crossover Pc and 
mutation Pm) for comprehensive optimization, are randomly generated and encoded in a binary string of 
Nbit-bit a gene, providing 2 bitN -point, which is normalized into the pre-defined searching space. 

In step 2, the individual ith-chromosome at nth-iteration is assessed by the fitness function regarding 

the error Ei,n between the confirmed and prediction values, , ,11 / ( 1)N j
i n i njf E== +∑ , where N is the total number 

of updated data. The higher the fitness value, the higher the scoring chromosome.  
In step 3, to maintain some fittest chromosomes by the elitism strategy, they are saved by Melit% 

which can pass to the next generation unconditionally, whereas the rest are selected by assigning the bias 
of selection to those with higher fitness values through the roulette wheel method. 

Lastly, in step 4, the selected 2 chromosomes, according to Pc, are subsequently crossed at random 
positions to change the information from each other in the crossover stage. For getting out of the local 
minima, the newly produced chromosomes are mutated at the random position with Pm. So, the former 
chromosomes are replaced by the generated offspring. The process of GA is then repeated step 1- step 4, 
as long as without improving the convergence rate or meeting the maximum generation.    

 
 

 
Figure 3 The optimization of parameters of the model-free method through genetic algorithm. 
 
 

For the time-series MLR (D. A. Freedman, 2009), a statistical technique is used to identify the 
relationship of the independent variable (predictor) set to the dependent variable. Here, due to the limited 
independent data, e.g., the transportation of people of each province during the returning hometown 
period, population interaction activity, medical data of patients, weathers, that impact on the dynamic 
change of the number of the predicted results, so some past data with a certain number of delays or lagged 
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values (lag), y(t-1), y(t-2),…,y(t-lag), and their interaction terms (the combination of product terms) are 
used for predicting a future value y(t). The MLR model can be expressed as, 
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Selecting the appropriate lagged value is important. To make Eq. (5) more accurate, the parameters 

of the MLR are updated through the GLS to minimize the sum of squared residual. 
To prepare the data in training the prediction models, the dates are changed into the number to set as 

the independent variable. Let January 12, 2020, be the 1st day in prediction. Some past data required 
initially to fit the functions of the free-model method, whereas at least 30, 37, and 60 past data required to 
train : test (75 % : 25 %) the regression model for 1-day, 1-week, and 1-month ahead, respectively. 
Therefore, the free-model method can be used at the beginning of the viral spread, and the MLR model is 
subsequently applied to predict in the middle of February, March, and April. To assess the prediction 
models, 2 error metrics: the root mean square error (RMSE) and the R-squared or coefficient of 
determination (R2), are used, where the lesser the RMSE the more accurate the prediction, and the higher 
of R2 the more completely explained the variations of the observation by the predictor set. 
 
Results and discussion 

For the model-free method, in the GA optimization stage, the pre-setting values are as follows, M = 
10, Nbit = 10, N = [10, 11, …], Melit = 10 %, double point crossover, and multiple point mutation. The 
searching spaces of the parameters for the Gaussian function, l1, l2, and l3 are [1, 300], [10, 200], and [5, 
50], respectively, those of the logistic function, j1, j2, and j3 are [14, 2000], [10, 100], and [1, 50], 
respectively, and those of the hyperbolic tangent, k1, k2, k3, and k4 are [1, 3000], [5, 500], [0.001, 1], and 
[5, 1500], respectively. The GA’s parameters, Pc and Pm, are [0.65, 0.95], and [0.05, 0.35], respectively. 
After meeting the stopping criterion of maximum generation set as 10,000, the best chromosomes 
(solutions) represented parameters of the model-free method with the optimized Pc and Pm, including the 
dynamic functions according to the number of training data from January 12, 2020, to January 31, 2020, 
to February 29, 2020, to March 31, 2020, and to April 17, 2020, for the logistic, hyperbolic tangent, and 
Gaussian distribution functions are shown in Figures 4(a) - 4(d), Figures 5(a) - 5(d), and Figures 6(a) - 
6(d), respectively. 

 

 
Figure 4 The convergence of the best chromosomes, and resulting fitted-curves of the Gaussian function.  
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Figure 5 The convergence of the best chromosomes, and resulting fitted-curves of the logistic function.  
 
 

 
Figure 6 The convergence of the best chromosomes, and resulting fitted-curves of the hyperbolic tangent 
function.  
 
 

In the test, the prediction results of the free-model method (i.e., the newly infected patient by the 
Gaussian function, and the accumulated patients by the hyperbolic-tangent and logistic functions) are 
shown in Figures 7 and 8, respectively. The results of parameters of the predicted functions (i.e., k1, k2, 
k3, and k4), including the RMSE, R2, inflection/turning points, the ending date of viral spread, and the 
total patients, are presented in Table 1. After assessing the goodness-of-fit of the used functions in 
model-free method, they have a high R2, whereas the Gaussian function gives lower RMSE than the rest. 

For the prediction on infected patients using the GDF of the 4 periods (Figure 7), the results 
showed that the cessation (ending) day of viral spread is at around May 2 - 5, 2020. Whereas, for the 
prediction on accumulated patients using hyperbolic tangent and logistic functions of the 4 periods 
(Figure 8), the results showed that the cessation day varies with the past data is not consistent. However, 
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the cessation days using the data from January 12 to April 17, 2020, are May 4, 2020, and June 5, 2020, 
predicted by the hyperbolic-tangent and logistic functions, respectively. Moreover, the results indicate 
that total patients are about 2,750 and 3,000 cases. Furthermore, the turning point (peak time) of the 
Gaussian function and the inflection point of the hyperbolic tangent and logistic functions are located on 
April 2 - 5, 2020 that corresponds to using curfew and social distance measures. 

 
 

 
Figure 7 Prediction results of the confirmed infected patients using Gaussian distribution function. 
 
 

 
Figure 8 Prediction results of the accumulated patients using logistic and hyperbolic tangent functions. 
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Table 1 The optimized parameters of the model-free method with their performances and forecasts. 

Function Training  
period 

Parameter (95 % C.I.)* RMSE R2 

Predictions 

Cessation 
day 

Inflection 
point  

Total 
patients (SD.) (SD.) (SD.) (SD.) 

Gaussian 
function 

 l1 l2 l3 -      
12Jan. - 31Jan. 3.46 

(0.32) 
24.32 
(1.81) 

19.98 
(1.03) - 1.42 0.90 3 May 6 Feb. - 

12Jan. - 29Feb. 5.01 
(0.14) 

69.74 
(4.31) 

38.31 
(3.32) - 1.85 0.79 5 May 22 Mar. - 

12Jan. - 31Mar. 128.49 
(5.3) 

78.86 
(3.33) 

25.04 
(2.03) - 13.53 0.92 2 May 3 Apr. - 

12Jan. - 17Apr.  128.27 
(4.9) 

78.26 
(2.83) 

24.37 
(1.99) - 14.36 0.88 2 May 5 Apr. - 

average 7.79 0.87 - - - 

Logistic 
function 

 j1 j2 j3 -      
12Jan. - 31Jan. 24.88 

(2.5) 
17.35 
(1.5) 

3.42 
(0.22) - 1.01 0.91 22 Feb. 1 Feb. 25 

12Jan. - 29Feb. 42.69 
(2.8) 

25.03 
(2.0) 

7.53 
(0.9) - 2.61 0.79 24 Mar. 8 Feb. 43 

12Jan. - 31Mar. 1989.7 
(13.3) 

78.23 
(3.41) 

10.02 
(0.87) - 153.0 0.74 5 Jun. 4 Apr. 2,000 

12Jan. - 17Apr. 2990.6 
(23.3) 

80.00 
(3.14) 

10.07 
(1.1) - 186.9 0.83 5 Jun. 5 Apr. 3,000 

average 85.88 0.82 - - - 

Hyperbolic 
tangent 
function 

 k1 k2 k3 k4      
12Jan. - 31Jan. 7.60 

(0.87) 
14.95 
(1.23) 

0.29 
(0.03) 

8.67 
(0.88) 0.08 0.95 10 Feb. 28 Jan. 16 

12Jan. - 29 Feb. 19.66 
(1.87) 

21.52 
(1.98) 

0.08 
(0.00) 

18.96 
(1.74) 1.71 0.94 13 Mar. 5 Feb. 38 

12Jan. - 31Mar. 850.06 
(15.3) 

73.43 
(3.35) 

0.15 
(0.00) 

880.1 
(12.7) 25.54 0.97 20 Apr. 27 Mar. 1,750 

12Jan. - 17Apr. 1381.3 
(53.9) 

77.54 
(4.6) 

0.09 
(0.00) 

1357.7 
(60.3) 46.55 0.96 4 May 2 Apr. 2,750 

average 18.47 0.95 - - - 

* C.I. and S.D. stands for confident interval and standard deviation of the error 
 
 

For the MLR, time lag is chosen to be 4 (lag) by considering the autocorrelation plots (Figure 9) of 
which the correlation coefficients are more than 0.8. Therefore, the prediction model can be represented 
through 16 parameters (k0, k1, k2, …, and k15), which not shown here, by 

 
0 1 2 3 4 5

6 10 11

14 15

( ) ( 1) ( 2) ( 3) ( 4) ( 1) ( 2)
( 1) ( 3) ... ( 3) ( 4) ( 1) ( 2) ( 3)

... ( 2) ( 3) ( 4) ( 1) ( 2) ( 3) ( 4)

y t Lead k k y t k y t k y t k y t k y t y t
k y t y t k y t y t k y t y t y t

k y t y t y t k y t y t y t y t

+ = + − + − + − + − + − × −
+ − × − + + − × − + − × − × −
+ + − × − × − + − × − × − × −

,           (4) 

 
where y(t + Lead) represents the predicted variables for 1-day-ahead (Lead = 1), 1-week-ahead (Lead = 
7), and 1-month-ahead (Lead = 30). 
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Figure 9 The autocorrelation plots. 
 
 

For the prediction using the time-series MLR, the results are shown in Figure 10. It is seen that the 
MLR models can predict the number of variables well, especially for 1-day and 1-week ahead. By using 
the RMSE (Table 2) for evaluation, the predictions 1-day-ahead and 1-week-ahead are more accurate 
than those for 1-month ahead with regards to the RMSE. Whereas by using the R2 for assessment, the 
variation of prediction variable for 1-day-ahead and 1-week-ahead can be explained well by using 4-time 
lags of past value as the predictors. 

 
 

 
Figure 10 Prediction results by using the time series MLR. 
 
 
Table 2 The prediction performances of the MLR. 

Variable Period 

Performances 
Prediction 

(cases) 
1-day- 
ahead 

1-week- 
ahead 

1-month- 
ahead 

R2 RMSE R2 RMSE R2 RMSE 

Newly infected  
case 

12Jan. - 31Jan. 0.91 0.46 0.53 1.46 - - - 
12Jan. - 29Feb. 0.53 1.14 0.52 1.28 0.89 0.28 - 
12Jan. - 31Mar. 0.97 7.00 0.88 15.19 0.44 38.53 - 
12Jan. - 17Apr. 0.89 13.85 0.78 19.83 0.30 40.70 - 

average 0.82 5.61 0.67 9.44 0.54 26.50 - 

Cumulatively 
infected case 

12Jan. - 31Jan. 0.99 0.35 0.99 0.23 - - - 
12Jan. - 29Feb. 0.99 1.07 0.96 1.92 1.0 0 2,689 
12Jan. - 31Mar. 1.0 5.43 1.0 21.64 0.88 151.59 2,689 
12Jan. - 17Apr. 1.0 11.98 0.99 60.86 0.93 247.06 2,695 

average 0.995 4.70 0.98 21.16 0.93 132.88 - 
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Conclusions 

In this study, the model-free method and the time-series MLR model are implemented online to 
predict the ongoing infected cases of COVID-19 in Thailand during the 1st and second phases of the 
epidemic. The prediction results from January 12, 2020, to April 17, 2020, using the model-free method 
based on the Gaussian, hyperbolic-tangent, and logistic functions matched the number trend of the daily 
confirmed patients and its cumulative cases. Also, the prediction results using the MLR model are 
accurate up to a 1-week-ahead of the forecast. Though, at the moment of proposing the predictive models 
(April 17, 2020), while the COVID-19 is not terminated, the other results of cessation day and total 
infected patients are still not proven. In the future, the predictive model for the spread of COVID-19 can 
be further improved by incorporating the other time series, such as the transportation of people of each 
province during the outbreak, population interaction activity, medical data of patients, and weathers, into 
the MLR model. 
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