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Abstract 

In this paper, the novel hybrid finite difference type Crank-Nicolson scheme with the aid of shifted 
Grünwald estimate is proposed to solve fractional partial differential equations. Consistency of the 
proposed method is confirmed using fractional Taylor’s expansion. Error analysis and properties of the 
scheme are proved. It is proved that the truncation error for this scheme is of the order of the fractional. 
Stability and convergence of the proposed method is proved. The exact solution is obtained via two-steps 
Adomian decomposition method. Companions are made between this proposed scheme and the closed 
analytical form solution. Numerical results are given. 

Keywords: Crank-Nicolson method, fractional partial differential equations, fractional Taylor's series, 
Riemann-Liouville fractional derivative, shifted Grünwald Estimate, two-step Adomian decomposition 
method 
 
 
Introduction 

Various powerful methods have been 
presented to find the approximation solutions of 
nonlinear partial differential equations and 
fractional PDE, for example, Exp-function, G'/G-
function, DTM method, tanh function method, sinh 
function method and so on [1-8]. In recent years, 
fractional calculus is used for many problems in 
physics, mathematics and engineering in this 
direction we refer for example to the papers by 
Ibrahim and Momani [9], Letinivov [10]. Oeser 
and Freitag [11] in 2009 used fractional 
differential equations for the behavior of 
rheological materials that exhibit special load 
history characteristics. In the last decade fractional 
partial differential equations have many 
applications in science and technology by Fitt, et 
al. in [12]. Meerschaert and Tadjeran [13] in 2006 
gave numerical solutions for specific fractional 
PDEs using finite difference types of explicit and 
implicit Euler methods. In this paper, we examine 
fractional finite difference methods of Crank-
Nicolson type to solve the general fractional partial 
differential equations (FPDEs) of the form 

∂U(x, t)
∂t

= c(x)
∂αU(x, t)
∂xα + s(x, t)                        (1) 

 
on a finite domain 

 
Ω = {(x, t)|L ≤ x ≤ R , 0 ≤ t ≤ T}. 

 
Here, we consider the case 1 ≤ α ≤ 2, where 

the parameter α is the fractional order of the spatial 
derivative. The function s(x, t) is a source or sink 
term. The functions c(x) ≥ 0 may be interpreted 
as transport related coefficients. We also assume 
an initial value U(x, 0) = f(x) for L ≤ x ≤ R and 
zero Dirichlet boundary conditions. For α = 1 
and α = 2 Eq. (1) reduces to the following 
classical hyperbolic and parabolic PDEs 
respectively 
 
∂U(x, t)
∂t

= c(x)
∂U(x, t)
∂x

+ s(x, t)                          (2) 
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∂U(x, t)
∂t

= c(x)
∂2U(x, t)
∂x2

+ s(x, t).                       (3) 

Definitions 

Riemann-Liouville Fractional Derivatives 
Let function f ∶ ℝ → ℝ, x → f(x), has 

continuous derivatives of order n. 
 

Dx
αf(x) =

dαf(x)
dxα

=
1

Γ(n − α)
dn

dxn
� (x
x

0
− t)n−α−1 f(t)dt                       (4) 

 
which is a Riemann-Liouville fractional derivative 
of order α, where n is an integer such that n − 1 ≤
α ≤ n and Γ is the gamma function (see [14-16]). 
For the function f(x) = xm, α derivative of xm is 
as follows 
 

Dx
αxm =

Γ(m + 1)
Γ(m − α + 1) xm−α.                                (5) 

 
Lax-Richtmyer’s equivalence theorem 

Given a properly posed linear initial-value 
problem and a linear finite difference 
approximation to it that satisfies the consistency 
condition, stability is the necessary and sufficient 
condition for convergence [17]. 

 
Taylor’s expansion of fractional order 

Assume that the continuous function 
f:ℝ → ℝ,x → f(x), has fractional derivative of 
order kα for any positive integer k and any α, 
1 ≤ α ≤ 2. Then the following fractional Taylor’s 
series holds 

f(x + h) = �
hkα

Γ(1 + kα) f (kα)(x)
∞

k=0

,                      (6) 

where f (kα)(x) is the derivative of order kα of 
f(x). Formally, one has 
𝑓(𝑥 + ℎ) = 𝐸á�ℎá𝐷𝑥á�𝑓(𝑥),                                    (7) 
where Eα(x) denotes the Mittag-Leffler function 
defined by the expression 

Eα(x): = �
xk

Γ(1 + kα) .
∞

k=0

                                        (8) 

we draw attention to the point that Γ(1 + kα) ≔
(kα)! [8,18]. 
 
Grünwald estimate 

Standard Grünwald estimate 

 
when 1 ≤ á ≤ 2, we define the standard Grünwald 
formula 
 
𝑑á𝑓
𝑑𝑥á = 𝑙𝑖𝑚

𝑀→∞

1
ℎá �𝑔𝑘 . 𝑓(𝑥 − (𝑘 + 1)ℎ),

𝑀

𝑘=0

             (9) 

 
that defines the following standard Grünwald 
estimate to the fractional derivative 
 
dαf
dxα =

1
hα � gk. f(x − (k + 1)h)

M

k=0

+ O(hα).      (10)  

 
Shifted Grünwald estimate 
 
When 1 ≤ á ≤ 2, we define the shifted Grünwald 
formula 
dαf
dxα

= lim
M→∞

1
hα
� gk. f(x − (k − 1)h)
M

k=0

,            (11) 

that defines the following shifted Grünwald 
estimate to the fractional derivative 
dαf
dxα

=
1

hα
� gk. f(x − (k − 1)h)
M

k=0

+ O(hα),     (12) 

where M are positive integers, h = R−L
M

, Γ is the 
gamma function, and the normalized Grünwald 
weights are defined by 

𝑔𝑘 = (−1)𝑘
 Ã(á + 1)

 Ã(𝑘 + 1) Ã(á − 𝑘 + 1)
                (13) 

for 𝑘 = 0,1,2, …, 

or 

g0 = 1  and  gk = (−1)k
α(α − 1) … (α − k + 1)

k!
  (14) 

for k = 1,2,3, … 
 
Note that these normalized weights only depend on 
the order α and the index k (see [16,19-20]). 
 
Approximating the fractional partial 
differential equation 

We examine Crank-Nicolson finite 
difference methods of order α in space for the 
solution of the following time-dependent fractional 
partial differential equations 

 
Ut − c(x)Uαx − s(x, t) = 0.                                 (15) 
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Along with the initial value and Dirichlet boundary 
conditions 
 
U(x, t0) = f(x),         L ≤ x ≤ R.                          (16) 
 
And also boundary conditions if we are working 
on a bounded domain, e.g., the zero Dirichlet 
conditions 
 
U(L, t) = 0     for 0 ≤ t ≤ T 
U(R, t) = 0     for 0 ≤ t ≤ T.                                (17) 
 

In practice we generally apply a set of finite 
difference equations on a discrete grid with grid 
points �xi, tj� where i = 1,2, … , K, j = 1,2, … , n, 

xi = L + ih, tj = jk. Here h = ∆x is the mesh 
spacing on the x-axis and k = ∆t is the time step. 
Let ui,j = u�xi, tj� represent the numerical 
approximation at grid point �xi, tj�. Since the fluid 
flow is an evolution equation that can be solved 
forward in time, we set up our difference equations 
in a form where we can march forward in time, 
determining the values Ui,j+1 for all  i from the 
values Ui,j at the previous time level, or perhaps 
using also values at earlier time levels with a 
multistep formula. One natural discretization of 
Eq. (15) based on shifted Grünwald estimates Eq. 
(12) would be 

 
ui,j+1 − ui,j

k
−

ci
2hα

�� gk. ui−p+1,j+z

i+1

p=0

1

z=0

−
si,j + si,j+1

2
= 0,                                                                              (18) 

 
or for r = ∆t

2hα
 we have 

 

ui,j+1 = ui,j + rci�� gk. ui−p+1,j+z

i+1

p=0

1

z=0

+ k
si,j + si,j+1

2
 ,                                                                                    (19) 

i.e.,               

rg0ciui+1,j+1 + (1 − rg1ci)ui,j+1 − rci� gk. ui−k+1,j+1

i+1

k=2

= rg0ciui+1,j + (1 + rg1ci)ui,j + rci� gk. ui−k+1,j

i+1

k=2

+ k
si,j + si,j+1

2
.                            (20) 

 
The computational molecule corresponding to Eq. (19) is shown in Figure 1. Denote ui,j+1 by ui,j 

for i = 1,2, … , K 

 
 

Figure 1 The molecule of fractional Crank-Nicolson method in rows 𝑗 and 𝑗 + 1. 
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The local truncation error and consistency 

Let Fi,j(u) = 0 represent fractional 
difference equation approximating the fractional 
partial differential equation at the (i, j)th mesh 
point, with exact solution u. If u is replaced by U 
at the mesh points of the difference equation, 
where  U is the exact solution of the fractional 
partial difference equation, the value of Fi,j(U) is 
called the local truncation error Ti,j at the (i, j) 
mesh point. Fi,j(U) measures the amount by which 
the exact solution values of the fractional partial 
differential equation at the mesh points of the 
difference equation do not satisfy the difference 
equation at the point (ih, j∆t). 

Using standard and fractional Taylor’s 
expansions, it is easy to express Ti,j in terms of 
powers of  h,  ∆t, partial derivatives and fractional 
partial derivatives of  U at (ih, j∆t). 

Although  U and its derivatives are generally 
unknown, the analysis is useful because it provides 
a method for comparing the local accuracies of 
different difference schemes approximating the 
fractional partial differential equation. 
 
Theorem 1. The local truncation error of the 
fractional Crank-Nicolson difference 
approximation with 1 ≤ α ≤ 2 for fractional 
equation 
 
∂U
∂t

− c
∂αU
∂xα

− s = 0                                               (21) 
 
at the point (ih, j∆t) is Ti,j = O(∆t2) + O(hα) +
O(hα∆t). 
 
Proof. Since u is the exact solution of the Crank-
Nicolson from Eq. (18) we can write 

 

Fi,j(u) =
ui,j+1 − ui,j

∆t
−

ci
2hα

�� gk. ui−k+1,j+z

i+1

k=0

1

z=0

−
si,j + si,j+1

2
= 0                                                              (22) 

Ti,j = Fi,j(U) =
Ui,j+1 − Ui,j

∆t
−

ci
2hα

�� gk. Ui−k+1,j+z

i+1

k=0

1

z=0

−
si,j + si,j+1

2
.                                                        (23) 

By standard Taylor’s expansion 

Ui,j+1 = U�xi, tj+1� = Ui,j + ∆t �
∂U
∂t
�
i,j

+
1
2
∆t2 �

∂2U
∂t2

�
i,j

+
1
6
∆t3 �

∂3U
∂t3

�
i,j

+ ⋯                                          (24) 

The fractional Taylor’s expansion from Eq. (6) gives 

Ui−k+1,j = U�xi−k+1, tj� = Ui,j +
[(1 − k)h]α

α!
�
∂αU
∂xα

�
i,j

+
[(1 − k)h]2α

(2α)!
�
∂2αU
∂x2α

�
i,j

+ ⋯                             (25) 

Ui−k+1,j+1 = U�xi−k+1, tj+1� = Ui,j + ∆t �
∂U
∂t
�
i,j

+
1
2
∆t2 �

∂2U
∂t2

�
i,j

+ ⋯ 

 +
[(1 − k)h]α

α!
��
∂αU
∂xα

�
i,j

+ ∆t�
∂α+1U
∂xα ∂t

�
i,j

+
1
2
∆t2 �

∂α+2U
∂xα ∂t2

�
i,j

+ ⋯� 

  +
[(1 − k)h]2α

(2α)!
��
∂2αU
∂x2α

�
i,j

+ ∆t�
∂2α+1U
∂x2α ∂t

�
i,j

+
1
2
∆t2 �

∂2α+2U
∂x2α ∂t2

�
i,j

+ ⋯� + ⋯                                         (26) 

We consider the Taylor’s expansion for  si,j+1, thus 

si,j+1 = s�xi, tj+1� = si,j + ∆t �
∂s
∂t
�
i,j

+
1
2
∆t2 �

∂2s
∂t2

�
i,j

+
1
6
∆t3 �

∂3s
∂t3

�
i,j

+ ⋯                                                (27) 

 
Substituting Eq. (24), Eq. (25), Eq. (26) and Eq. (27) into Eq. (23) gives 
 

Ti,j = Fi,j(U) = �
∂U
∂t
�
i,j

+
1
2
∆t�

∂2U
∂t2

�
i,j

+
1
6
∆t2 �

∂3U
∂t3

�
i,j

+ ⋯    
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−
ci

2hα
� gk. �Ui,j +

[(1 − k)h]α

α!
�
∂αU
∂xα

�
i,j

+
[(1 − k)h]2α

(2α)!
�
∂2αU
∂x2α

�
i,j

+ … + Ui,j + ∆t �
∂U
∂t
�
i,j

i+1

k=0

+
1
2
∆t2 �

∂2U
∂t2

�
i,j

+ ⋯

+
[(1 − k)h]α

α!
��
∂αU
∂xα

�
i,j

+ ∆t�
∂α+1U
∂xα ∂t

�
i,j

+
1
2
∆t2 �

∂α+2U
∂xα ∂t2

�
i,j

+ ⋯�

+
[(1 − k)h]2α

(2α)!
��
∂2αU
∂x2α

�
i,j

+ ∆t �
∂2α+1U
∂x2α ∂t

�
i,j

+
1
2
∆t2 �

∂2α+2U
∂x2α ∂t2

�
i,j

+ ⋯� + ⋯�

− �si,j +
∆t
2
�
∂s
∂t
�
i,j

+
1
4
∆t2 �

∂2s
∂t2

�
i,j

+ ⋯� .                                                                        (28) 

Since 

� gk = 0
∞

k=0

                                                                                                                                                                 (29) 

 
(see [13]), one can prove that 

 � gk(1 − k)α = α!
∞

k=0

,                                                                                                                                                (30) 

Because ∑ gk(1 − k)α∞
k=0  is an α derivative of (1 + x)α. 

Thus new from on Eq. (28), Eq. (29) and Eq. (30) we can write 

Ti,j = �
∂U
∂t

− c
∂αU
∂xα

− s�
i,j

+
1
2
∆t�

∂2U
∂t2

�
i,j

+ ⋯−ci
(1 − k)2α

(2α)!
hα �

∂2αU
∂x2α

�
i,j

+ ⋯

− ci
(1 − k)α

2(α!)
∆t�

∂α+1U
∂xα ∂t

�
i,j

+ ⋯− ci
(1 − k)2α

2�(2α)!�
hα∆t�

∂2α+1U
∂x2α ∂t

�
i,j

+ ⋯

− ci
(1 − k)2α

2�(2α)!�
hα
∆t
2
�
∂2α+2U
∂x2α ∂tα

�
i,j

+ ⋯

−
∆t
2
�
∂s
∂t
�
i,j

,                                                                                                                                (31) 

but U is the exact solution of the differential Eq. (21) so �∂U
∂t
− c ∂αU

∂xα
− s�

i,j
= 0 and  

 �
𝜕2𝑈
𝜕𝑡2

− 𝑐
𝜕𝛼+1𝑈
𝜕𝑥𝛼𝜕𝑡

−
𝜕𝑠
𝜕𝑡
�
𝑖,𝑗

= 0. 

 
Therefore the principal part of the local truncation error is 
 

��
1
6
∂3U
∂t3

−
1
4
∂2s
∂t2

� ∆t2 − chα
∂2αU
∂x2α

− c
1
2

hα∆t
∂2α+1U
∂x2α ∂t

�
i,j

. 

Hence Ti,j = O(∆t2) + O(hα) + O(hα∆t) i.e., for any r = ∆t
2hα

 , Ti,j  is O(∆t2) or O(hα) or O(hα∆t), as one 
would expect. This is in the contrast with Eq. (12) in [13] 
This shows that the difference equation is consistent and the local truncation error vanishes as h → 0 and 
∆t → 0. 
Note that for s(x, t) = 0, when α = 1 (hyperbolic), from Eq. (14) g0 = 1, g1 = −1 and g2 = g3 = ⋯ =
0 and we have the standard Crank-Nicolson finite difference approximation 



FPDEs Using Crank-Nicolson Method Abdollah BORHANIFAR and Sohrab VALIZADEH 
http://wjst.wu.ac.th 

Walailak J Sci & Tech 2012; 9(4) 
 
438 

ui,j+1 − ui,j
∆t

=
1
2
�

ui+1,j+1 − ui,j+1
h

� +
1
2
�

ui+1,j − ui,j
h

�, 
while for α = 2 (parabolic), from Eq. (14) g0 = 1, g1 = −2, g2 = 1 and g3 = g4 = ⋯ = 0 the resulting 
Crank-Nicolson method is 
ui,j+1 − ui,j

∆t
=

1
2
�

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
� +

1
2
�

ui+1,j − 2ui,j + ui−1,j

h2
�. 

 

Stability of the fractional Crank-Nicolson method 
From the system of equations defined by Eq. (20), together with the Dirichlet boundary conditions 

Eq. (17), define a linear system 
 

𝕌j+1 = (I − A)−1(I + A)𝕌j + ∆t(I − A)−1𝕊j,                                                                                                     (32) 
 

where r = ∆t
2hα

 , 𝕌j = �u0,j, u1,j, u2,j, … , uK,j�
T and 

 

𝕊j = �0,
s1,j+s1,j+1

2
+,

s2,j+s2,j+1

2
, … ,

sK−1,j+sK−1,j+1

2
, 0�

T
. 

 
Note that this matrix A is a non-sparse matrix. To illustrate this matrix pattern, we list from Eq. (20) the 
corresponding first three and last two equations for i = 1, 2, 3, K-2 and K-1. 
 

−rg0c1u2,j+1 + (1 − rg1c1)u1,j+1 − rg2c1u0,j+1 = 

rg0c1u2,j + (1 + rg1c1)u1,j + rg2c1u0,j + ∆t
s1,j+s1,j+1

2
 

−rg0c2u3,j+1 + (1 − rg1c2)u2,j+1 − rg2c2u1,j+1 − rg3c2u0,j+1

= rg0c2u3,j + (1 + rg1c2)u2,j + rg2c2u1,j + rg3c2u0,j + ∆t
s2,j+s2,j+1

2
 

−rg0c3u4,j+1 + (1 − rg1c3)u3,j+1 − rg2c3u2,j+1 − rg3c3u1,j+1 − rg4c3u0,j+1

= rg0c3u4,j + (1 + rg1c3)u3,j + rg2c3u2,j + rg3c3u1,j + rg4c3u0,j + ∆t
s3,j+s3,j+1

2
 

−rg0cK−2uK−1,j+1 + (1 − rg1cK−2)uK−2,j+1 − rcK−2� gk. uK−k−1,j+1

K−1

k=2

= 

rg0cK−2uK−1,j + (1 + rg1cK−2)uK−2,j + rcK−2� gk. uK−k−1,j

K−1

k=2

+ ∆t
sK−2,j+sk−2,j+1

2
 

−rg0cK−1uK,,j+1 + (1 − rg1cK−1)uK−1,j+1 − rcK−1� gk. uK−k,j+1

K

k=2

= 

rg0cK−1uK,,j + (1 + rg1cK−1)uK−1,j + rcK−1� gk. uK−k,j

K

k=2

+ ∆t
sK−1,j+sK−1,j+1

2
. 

 
Thus the matrix entries Ai,j for i, j = 1,2, … K − 1 can be defined by 
 

Ai,j = �
0,                               for j ≥ i + 2
rg1ci,                        for j = i                                        
rgi−j+1ci,                 otherwise,

� 

 

while A0,j = AK,j = Aj,0 = Aj,K = 0  for j = 0,1, … K. 
 

Note that from Eq. (14) g1 = −α , for 1 ≤ α ≤ 2. For i ≠ 1 we have gi ≥ 0 (the strict inequality holds 
for non-integer values of α). 
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We also have −g1 ≥ ∑ gkk=K
k=0,k≠1 , which 

follows from Eq. (29). 
According to the Greschgorin theorem the 

eigenvalues of the matrix A in (5.2) lie in the 
union of the K circles centered at Ai,i with radius 
 

ri = � �Ai,k�
K

k=0,k≠1

. 

 
Here we have, 
 
Ai,i = rg1ci = −rαci 
 
and 

ri = � �Ai,k�
K

k=0,k≠1

= � �Ai,k�
i+1

k=0,k≠1

= rci � gk

i+1

k=0,k≠1

≤ rαci. 

 
Therefore, the eigenvalues of matrix A are in 

the left half of the complex plane. 
The translate T(z) = 1+z

1−z
 brings the left half 

of the complex plane into the circle with radius 1 
(see [21]) and so if µ is the eigenvalues of the 
matrix A, when 1+µ 

1−µ 
 is the eigenvalues of the 

matrix (1 − A)−1(1 + A) (see [22]). Thus we 
result that the eigenvalues of the matrix (1 −
A−11+A are in the circle with radius 1. Hence any 
error in 𝕌j is not magnified, and therefore the 
method is unconditionally stable. Now from Lax-
Richtmyer’s equivalence theorem since from 
theorem 1 this method is consistence of order 
O(∆t2) + O(hα) + O(hα∆t) therefore we can 
express that the proposed method in section (20) 
is convergent too. 
 
Numerical results 

Example problem 
Consider the following fractional partial 

differential equation defined on 
 
Ω = {(x, t)|0 ≤ x ≤ 1 , 0 ≤ t ≤ 1} 
∂u(x, t)
∂t

= c(x)
∂1.8u(x, t)
∂x1.8 + s(x, t),                   (33) 

 
with the coefficient function c(x) = Γ(0.2)x1.8, the 
forcing function 
 

s(x, t) = −(2x − 11x2)e−t, 
 

initial value u(x, 0) = x(1 − x), and zero Dirichlet 
boundary conditions. 

 
Exact solution for example problem 

Applying the one fold integration inverse 
operator Lt−1 = ∫ (. )t

0 dt to (6.2) and using the 
specified initial condition yields 

u(x, t) = u(x, 0) + Lt−1 �c(x)Dx
1.8 �� ui

∞

i=0

��

+ Lt−1�s(x, t)�. 
Now from Appendix f(x, t) may be written as 
 
f(x, t) = u(x, 0) + Lt−1�s(x, t)�

= x(1 − x)
+ (e−t − 1)(2x − 11x2). 

 
Thus for f1(x, t) = x(1 − x), f2(x, t) =
x(1 − x)e−t and f3(x, t) = −(2x − 11x2) +
x(1 − 10x)e−t. 
 

It is clear that f1 and f3 do not satisfy Eq. 
(33), initial and boundary conditions. Now we 
choose Ψ1 = f2 and Ψ2 = f1 + f3. Then from the 
three steps algorithm in Appendix we will obtain 
u0 = x(1 − x)e−t 
u1 = (x − 10x2)e−t − (x − 10x2) + c(x)Dx

1.8u0
= (x − 10x2)e−t − (x − 10x2)
− (e−t − 1)(x − 10x2) = 0 

un = 0;              ∀n ≥ 2. 
Therefore, the solution is 
 
u(x, t) = x(1 − x)e−t.                                           (34) 
 

The fractional Crank-Nicolson absolute-error 
is identified by �Ui,j − ui,j� in which Ui,j and ui,j are 
exact and numerical Crank-Nicolson solutions 
respectively. The values of absolute-error for the 
example problem for different values of h and ∆t 
are shown in Table 1. Approximate and exact 
solutions for h = 0.05 and ∆t = 0.025 are shown 
in Figure 2 for T = 1 and ∆t

2hα
= 2.7464. Figure 3 

shows the exact and approximate solutions for 
h = 0.01, ∆t = 0.01 and ∆t

2hα
= 19.9054. 

Approximate and exact solutions for h = 0.01 and 
∆t = 0.01 are shown in Figure 4 for T = 20 and 
∆t
2hα

= 19.9054. Figure 5 shows the exact and 
approximate solutions for h = 0.02, ∆t = 0.01 and 
∆t
2hα

= 5.7163. 
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Table 1 Maximum error behavior versus grid size reduction for the example problem. 
 

𝒉 ∆𝐭 Final time Absolute-error of fractional Crank-Nicolson scheme 

0.200 0.1000 1 0.0042080 

0.100 0.0500 1 0.0039510 

0.050 0.0250 1 0.0033609 

0.025 0.0125 1 0.0026941 

0.010 0.0100 1 0.0019036 

0.010 0.0100 10 3.4213e-007 

0.020 0.0100 10 4.0654e-007 

0.040 0.0100 10 4.6978e-007 

0.010 0.0100 20 1.5533e-011 

0.020 0.0100 20 1.8457e-011 

0.040 0.0100 20 2.1328e-011 
 
 

 
Figure 2 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example 
problem with ∆t = 0.025 and h = 0.05 at time T = 1.0. 
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Figure 3 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example 
problem with ∆t = 0.01 and h = 0.01 at time T = 1.0. 
 

Figure 4 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example 
problem with ∆t = 0.01 and h = 0.01 at time T = 20. 
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Figure 5 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example 
problem with ∆t = 0.01 and h = 0.02 at time T = 20. 

 

Conclusions 

Crank-Nicolson finite difference method 
using shifted Grünwald estimate is encountered to 
find the approximate solution for fractional partial 
differential equations. Two-step Adomian 
decomposition method is used to obtain the exact 
solution. It is proved that the truncation error is in 
the form  O(∆t2) + O(hα) + O(hα∆t). The 
proposed method is unconditionally stable and the 
approximate solution based on fractional Crank-
Nicolson finite difference method converges to the 
exact solution successfully. 
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Appendix Two-step Adomian decomposition 
algorithm 

We adopt a two-step Adomian 
decomposition method to find the closed analytical 
form solution for the problem (15) − (17). In the 
light of this method (see [23-25]) we assume that 

u = � un

∞

n=0

.                                                              (35) 

 
to be the solution of (1). 
Now, (1) using (4) and (5) can be rewritten as 
 
Ltu(x, t) = c(x)Dx

αu(x, t) + s(x, t),                    (36) 
 
where Dx

α(. ) is the Riemann-Liouville derivative 
of order α, Lt = ∂

∂t
 is an invertible linear operator. 

Thus Lt−1 = ∫ (. )t
0 dt is the one fold integration 

inverse operator. 
Let us assume that  f(x, t) has the following form 
of Luo [24]: 
 
f(x, t) = u(x, 0) + Lt−1�s(x, t)�,                           (37) 
 
where f has written by sum of three functions 
 
f(x, t) = f1(x, t)+f2(x, t)+f3(x, t).                      (38) 
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Now we choose Ψ1 = fk, k = 1,2,3 and 
Ψ2 = f − fk where fk is a function that satisfies 
initial and boundary conditions. 

The two-step Adomian decomposition 
recursive algorithm is as follows from the papers 
[26-29]: 

 
step 0:            u0 = Ψ1 
step 1:            u1 = Ψ2 + Lt−1(c(x)Dx

αu0)      
step 2:            un+1 = Lt−1(c(x)Dx

αun)  , n ≥ 1.   
 

The practical solution will be the n-term 
approximation φ n 
 

φn = � ui

n−1

i=0

       ,    n ≥ 1                                      (39) 

with 
 
lim
n→∞

φn = u(x, t).                                                  (40) 
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