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Abstract

In this paper, the novel hybrid finite difference type Crank-Nicolson scheme with the aid of shifted
Grinwald estimate is proposed to solve fractional partial differential equations. Consistency of the
proposed method is confirmed using fractional Taylor’s expansion. Error analysis and properties of the
scheme are proved. It is proved that the truncation error for this scheme is of the order of the fractional.
Stability and convergence of the proposed method is proved. The exact solution is obtained via two-steps
Adomian decomposition method. Companions are made between this proposed scheme and the closed
analytical form solution. Numerical results are given.

Keywords: Crank-Nicolson method, fractional partial differential equations, fractional Taylor's series,
Riemann-Liouville fractional derivative, shifted Grinwald Estimate, two-step Adomian decomposition
method

Introduction

Various powerful methods have been
presented to find the approximation solutions of
nonlinear partial differential equations and
fractional PDE, for example, Exp-function, G'/G-
function, DTM method, tanh function method, sinh
function method and so on [1-8]. In recent years,
fractional calculus is used for many problems in
physics, mathematics and engineering in this
direction we refer for example to the papers by
Ibrahim and Momani [9], Letinivov [10]. Oeser
and Freitag [11] in 2009 wused fractional
differential equations for the behavior of
rheological materials that exhibit special load
history characteristics. In the last decade fractional
partial  differential equations have many
applications in science and technology by Fitt, et
al. in [12]. Meerschaert and Tadjeran [13] in 2006
gave numerical solutions for specific fractional
PDEs using finite difference types of explicit and
implicit Euler methods. In this paper, we examine
fractional finite difference methods of Crank-
Nicolson type to solve the general fractional partial
differential equations (FPDES) of the form

0U(x,t) _
a

0*"U(x, t)
ox®

c(x) +s(x,t) €Y)

on a finite domain
Q={xt|L<x<R,0<t<T}

Here, we consider the case 1 < a < 2, where
the parameter o is the fractional order of the spatial
derivative. The function s(x,t) is a source or sink
term. The functions c(x) = 0 may be interpreted
as transport related coefficients. We also assume
an initial value U(x,0) = f(x) for L<x <R and

zero Dirichlet boundary conditions. Foroa =1

anda =2 Eg. (1) reduces to the following

classical hyperbolic and parabolic PDEs

respectively

oU(x,t) - dU(x,t) FsD) @
at 0x
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oU(x,t) 62U(x t)
Framie =c(x)—55— +sxD. 3)
Definitions
Riemann-Liouville Fractional Derivatives
Let function f:R-> R, x- f(x), has
continuous derivatives of order n.
DEF(x) = d“f(x) 1 f x
x X dx* ~ ['(n— a)dx®
— D)L f(D)dt 4

which is a Riemann-Liouville fractional derivative
of order «, where n is an integer such that n — 1 <
a < nand I' is the gamma function (see [14-16]).
For the function f(x) = x™, « derivative of x™
as follows

'(m+1)

A,y Mm __ m-o

b _F(m—oc+1)X ®)
Lax-Richtmyer’s equivalence theorem

Given a properly posed linear initial-value
problem and a linear finite difference
approximation to it that satisfies the consistency
condition, stability is the necessary and sufficient
condition for convergence [17].

Taylor’s expansion of fractional order

Assume that the continuous function
f:R - R,x — f(x), has fractional derivative of
order ka for any positive integer k and any «,
1 < a < 2. Then the following fractional Taylor’s
series holds

f(x + h) = ZF(1+k SH00,

where f(k“)(x) is the derivative of order ka of
f(x). Formally, one has

f(x + h) = Es(R*D3)f (%), )
where E,(x) denotes the Mittag-Leffler function
defined by the expression

xK
EQ(X):Z ;m . (8)

we draw attention to the point that I'(1 + ka) :=
(ka)! [8,18].

(6)

Grinwald estimate
Standard Griinwald estimate

when 1 < 4 < 2, we define the standard Griinwald
formula

dé 1w
I lim h—z G- fCx = (ke + D),
k=0

dx? Moo

9

that defines the following standard Grunwald
estimate to the fractional derivative

def  1v
= ﬁz g f(x — (k + 1)h) + O(h%).  (10)
k=0

Shifted Grinwald estimate

When 1 < 4 < 2, we define the shifted Griinwald
formula

d*f
dxe

Z gef—(k=Dh), (D)

M—> h«

that defines the following shifted Griinwald
estimate to the fractional derivative

df 1%
= h_az g f(x — (k= Dh) + 0(h®), (12)

where M are positive integers, h = - , T is the

gamma function, and the normalized Grunwald
weights are defined by

AG@+1)
— (—1)k
9 =D Ak + DAG—k+1) (13)
fork =0,1,2, ...,
or
go =1 and g, = (-1 ala—1)..(a—k+1) (1)

k!
fork=1,2,3, ...

Note that these normalized weights only depend on
the order o and the index k (see [16,19-20]).

Approximating the fractional partial
differential equation
We  examine  Crank-Nicolson  finite

difference methods of order o in space for the
solution of the following time-dependent fractional
partial differential equations

(15)

Ui — c(x)Uyy —s(x,t) = 0.

434
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Along with the initial value and Dirichlet boundary
conditions

U ty) = f(x), L<x<R (16)

And also boundary conditions if we are working
on a bounded domain, e.g., the zero Dirichlet
conditions

ULt)=0 for0<t<T

UR =0 for0<t<T. (17)

In practice we generally apply a set of finite
difference equations on a discrete grid with grid
points (x;t;) wherei=12,..,K, j=12,..,n,

1 i+1
Uij+1 — Uij G
z=0 p=0

At
or for r = — we have
2h%

1 i+1

Sii + i
_ J ij+1
Ujji1 = Ujj + IC E E 8k Ui—p+1j+z T kT'

z=0 p=0
1.e.,

+ Sijt1

. Sij
K ~ohe k- Ui—p+1j+z — - =

x; = L+1ih, t; = jk. Here h=Ax is the mesh
spacing on the x-axis and k = At is the time step.
Let u;; =u(x;t}) represent the numerical
approximation at grid point (x;, t;). Since the fluid
flow is an evolution equation that can be solved
forward in time, we set up our difference equations
in a form where we can march forward in time,
determining the values Uj;,, for all i from the
values Uj; at the previous time level, or perhaps
using also values at earlier time levels with a
multistep formula. One natural discretization of
Eq. (15) based on shifted Grinwald estimates Eq.
(12) would be

0, (18)

(19)

rgoCilitqj+1 + (1 —1g1CU 41 — rciz Sk Ui—ka1,j+1

k=2

=rgoCiliy1j + (1 + rgicuy; + rg

i+1

k- Ui—k+1,j T kK
k=2

Sij Tt Sij+1

> (20)

The computational molecule corresponding to Eqg. (19) is shown in Figure 1. Denote u;;,; by u;;

fori=1,2,..,K

( roit l)_( u}

:'_r.r-.:f'.->—( e )—( "fﬂi"'-') f +1

() 1

(
\
(
o

.f'_l‘l,'[:.t".. f

:-_r,r-_:r}—( T

7 — 1 i

i+ 1

Figure 1 The molecule of fractional Crank-Nicolson method in rows j and j + 1.
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The local truncation error and consistency

Let Fj;(u) =0 represent fractional
difference equation approximating the fractional
partial differential equation at the (i,j)th mesh
point, with exact solution u. If u is replaced by U
at the mesh points of the difference equation,
where U is the exact solution of the fractional
partial difference equation, the value of F;;(U) is
called the local truncation error Tj; at the (i,j)
mesh point. F;;(U) measures the amount by which
the exact solution values of the fractional partial
differential equation at the mesh points of the
difference equation do not satisfy the difference
equation at the point (ih, jAt).

Using standard and fractional Taylor’s
expansions, it is easy to express T;; in terms of
powers of h, At, partial derivatives and fractional
partial derivatives of U at (ih, jAt).

Although U and its derivatives are generally
unknown, the analysis is useful because it provides
a method for comparing the local accuracies of
different difference schemes approximating the
fractional partial differential equation.

Theorem 1. The local truncation error of the

fractional Crank-Nicolson difference
approximation with 1 <a <2 for fractional
equation

ou  9*U 0 1)
ot “oxe 0T

at the point (ih,jAt) is T;; = O(At?) + O(h*) +
0(h*“At).

Proof. Since u is the exact solution of the Crank-
Nicolson from Eq. (18) we can write

1 i+1
+1 — Ui Sij t Sij+1
Fyy() =~ Zhazzgk Ui krajen — T = 0 22)
z=0 k=0 L L
i+
Uijs1 — Sij t Sij+1
Ty = Fy(0) = 2 S g Uy o — (23)

z=0 k=0
By standard Taylor’s expansion

au 1, 0%U 1 . 93U
Ui,j+1 = U(Xi'tj+1) = Ui.j + At (E)l‘] +§At F 1 + gAt w ! + - (24)
The fractional Taylor’s expansion from Eq. (6) gives
[(1 — k)h]* y0%U [(1 —k)h]?* (9?*U
Uicrsy = Uckon ) = Uy T(aXJ o), “
Ui—k+1j+1 = U(Xl k+1s ]+1) Uij + At( ) (6‘(2) + -
+[(1 —k)h]* (6“U) b At 0%ty 1 0%+2y +
ol ax« ij ax® at 2 0x* dt?
[(1 _ k)h]Za aZ(xU A aZot+1U N 1 Atz aZot+2U N N (26)
2a)! ox2a i 0%x2% 9t i 2 0%x2% 9t? i
We consider the Taylor’s expansion for s”+1, thus
s 9%s 1 (0%
Sij+1 = S(Xl, ]+1) = S + At(at>1] + = At? ﬁ ! +gAt at3 + (27)

Substituting Eq. (24), Eq. (25), Eq. (26) and Eq. (27) into Eq. (23) gives

au 1 0%U 1
Tl]_F”(U)_<at) +5At F +€At
ij

3
 (2U
ot3

> e
ij
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[(1 — k)h]* (6“U) [(1 — k)h]*® (62“U

au
al X% i Qa)! aX2a>ij + ..+ U+ At (E)l]

+[(1—k)h] <6°‘U) LAt 0*+ty +1At2 9*+2u N
a! 0x*/i; 0x* 0t y 2 0x* 0t? y

+[(1_k)h]2(x aZ(xU A aZcx+1U +1At2 aZcx+2U N N
2a)! 0x2e ) o at) 27 \ox2aat2 ’ N

+ at (aS) + ! At? o’ + (28)
Sij 2 \dt ij 4 ot? ij '
Since
Z gk=0 (29)
k=0

(see [13]), one can prove that

Z g(1-k)*=al, (30)

Because Yheo k(1 — k)% is an o derivative of (1 + x)*.
Thus new from on Eq. (28), Eq. (29) and Eq. (30) we can write

. _(aU 90U ) 1At Uy (-l (0*U)
L= ot Caxa S i atz ’ % (Z(X)' ox2a i

(1 _ k)a aa+1U (1 _ )20( 62a+1U

-G A A +

2(al) 0x* Jt y 2((20()1) 0x2* Jt ij

(1 _ k)Zot At 62a+2U

—C—————<h"— 7] +
2(2wy) 2 \ox** ot/

At 65) 31
(at )
ou o*u
but U is the exact solution of the differential Eq. (21) so (E — Cﬁ — S) ~=0and
Lj

02U %ty 09s _o
oz~ “oxae ),
Therefore the principal part of the local truncation error is

193U 103%s 02U 1 0%¢*t1y
- At? — ch® —c3 h*At ———

60t 4012 ox2¢ ox2e at

Hence T;; = O(At?) + O(h®) + O(h“At) i.e., forany r = F’ Tij
would expect. This is in the contrast with Eq. (12) in [13]

This shows that the difference equation is consistent and the local truncation error vanishes as h — 0 and
At - 0.

Note that for s(x,t) = 0, when a = 1 (hyperbolic), from Eq. (14) g, =1,g, =—1land g, = g5 =

0 and we have the standard Crank-Nicolson finite difference approximation

is 0(At?) or 0(h*) or O(h*At), as one
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Ui — U5 1 Wipgjer — Ujjeny 1 Ujpgj — Uy
At =2( h ) E( h )
while for a = 2 (parabolic), from Eq. (14) g, =1, g, = -2, g, = 1 and g; = g, = --- = 0 the resulting
Crank-Nicolson method is
Upje1 —Uj5 1 (ui+1,j+1 = 2uj541 + ui—l,j+1) +l<ui+1,j — 2u; + ui—l,j)

At 2 h2 2 h2 '
Stability of the fractional Crank-Nicolson method

From the system of equations defined by Eq. (20), together with the Dirichlet boundary conditions

Eqg. (17), define a linear system

Upa = (1= A)71(1 + A)U; + At(1 — A)TS, (32)
wherer = 2?1_; y U] = [uoyj, ulyj, uz_j, ey uK'j]T and
Sj — [0’ S1,j+S1j+1 + S2,jtS2j+1 o SK-1,jtSK-1,j+1 ) O]T.

2 2

Note that this matrix A is a non-sparse matrix. To illustrate this matrix pattern, we list from Eq. (20) the
corresponding first three and last two equations for i =1, 2, 3, K-2 and K-1.

—TgoC1Uzj+1 T 1- rglcl)ul,j+1 —I'g2C1Upj41 =

S1jFS1j+1
rgoCiuy; + (1 4+ rgocuygj + rgaciugy + At————

2
—IgoCaUzj41 T 1- rg1cz)uz,j+1 — I82CUqj41 — I'83CoUpj4+1
_ S2,jtS2j+1
=r1goCauz; + (1 +1g1cx)uy; + rgacauyj + rgscaug; + AtT
—TgoC3Ugjt1 T+ 1- rglc3)u3,j+1 — I82C3Up 541 — I'83C3Ug j41 — I84C3Uq 41
. S3,jtS3j+1
-_ rg0C3U4'j + (1 + rg1C3)u3’j + rg2C3uZ'j + rg3C3u1’j + rg4C3u0’j + AtT
K-1
—T8oCk—2Uk-1j+1 + (1 = I81Ck 2)Uk_2j4+1 — I'Ck—2 Z 8k- UR—k-1j+1 =
k=2
K-1 4
SK-2,jTSk-2,j+1
rgoCk—Ug-1j + (1 + rgicx_2)ug_oj + reg_ Z 8k-Ug_k—1; + At—z
k=2
K
—T8oCk-1UK,j+1 + (1 = rg1Ck_1)Ug_1j41 — FCk_1 Z 8k- UK—kj+1 =

k=2

SKk-1,jFSK-1j+1

K
rgock—1Ug,j + (1 + rgscg_q)ug_q1j + reg—q z 8k- Ug_kj + At >

k=2

Thus the matrix entries A;; for i,j = 1,2, ... K — 1 can be defined by

0, forj=i+2
Ajj = {r81Cp forj=1i
rgi_j+1Ci otherwise,

Whlle Ag'j = AK,] = Aj'g = A],K = 0 fOI‘j = 0,1, . K

Note that from Eq. (14) g, = —a, for 1 < a < 2. For i # 1 we have g; = 0 (the strict inequality holds
for non-integer values of a).
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We also have —g; > YKX=K,. g, which
follows from Eq. (29).

According to the Greschgorin theorem the
eigenvalues of the matrix A in (5.2) lie in the
union of the K circles centered at A;; with radius

K
| Akl

k=0k=1

ry =

Here we have,

Aj; = rg,c; = —rag;
and
K i+1 i+1
ry = Z |Ai'k| = Z |Ai'k| = r¢;j Z gk < rac;.

k=0k#1 k=0k=#1 k=0k#1

Therefore, the eigenvalues of matrix A are in
the left half of the complex plane.

The translate T(z) = g brings the left half

of the complex plane into the circle with radius 1
(see [21]) and so if p is the eigenvalues of the

matrix A, when i—ﬁ is the eigenvalues of the

matrix (1 —A)"1(1+ A) (see [22]). Thus we
result that the eigenvalues of the matrix (1 —
A—11+A are in the circle with radius 1. Hence any
error in U; is not magnified, and therefore the
method is unconditionally stable. Now from Lax-
Richtmyer’s equivalence theorem since from
theorem 1 this method is consistence of order
0(At?) + 0(h%) + O0(h®At) therefore we can
express that the proposed method in section (20)
is convergent too.

Numerical results

Example problem
Consider the following fractional partial
differential equation defined on

Q={xpD0<x<1,0<t<1}
du(x,t) o8u(x, t)

FTa c(x) —oxis T s(x, ),

(33)

with the coefficient function c(x) = I'(0.2)x'%, the
forcing function

s(x,t) = —(2x — 11x?)e”t,

initial value u(x,0) = x(1 — x), and zero Dirichlet
boundary conditions.

Exact solution for example problem
Applying the one fold integration inverse

operator Lyt = fot(.)dt to (6.2) and using the
specified initial condition yields

u(x,t) = u(x,0) + Lyt | c(x)DL8 (Z ui>
i=0
+ L (s(x D).
Now from Appendix f(x, t) may be written as

f(x,£) = u(x,0) + L;*(s(x, 1)
=x(1-x)
+ (e7* = 1)(2x — 11x2).

Thus for f; (x,t) = x(1 — x), f,(x,t) =
x(1 —x)e tand f3(x,t) = —(2x — 11x2) +
x(1 — 10x)e”t.

It is clear that f; and f; do not satisfy Eq.
(33), initial and boundary conditions. Now we
choose ¥; =f, and ¥, = f; + f;. Then from the
three steps algorithm in Appendix we will obtain
u, = x(1 —x)e™t
u; = (x— 10x?)e™t — (x — 10x2) + c(x)DL8u,
= (x — 10x®)e ' — (x — 10x?)
—(et=1)(x—-10x3) =0

u, = 0; Vn = 2.

Therefore, the solution is

u(x,t) = x(1 —x)et. (34)

The fractional Crank-Nicolson absolute-error
is identified by |U;; — u;;| in which U;; and u;; are
exact and numerical Crank-Nicolson solutions
respectively. The values of absolute-error for the
example problem for different values of h and At
are shown in Table 1. Approximate and exact
solutions for h = 0.05 and At = 0.025 are shown

in Figure 2 for T = 1 and zi_ta = 2.7464. Figure 3
shows the exact and approximate solutions for
h=001, At=001 and - =19.9054.

Approximate and exact solutions for h = 0.01 and

At = 0.01 are shown in Figure 4 for T = 20 and

2 = 19.9054. Figure 5 shows the exact and

2h®
approximate solutions for h = 0.02, At = 0.01 and
% =5.7163.
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Table 1 Maximum error behavior versus grid size reduction for the example problem.

h At Final time Absolute-error of fractional Crank-Nicolson scheme
0.200 0.1000 1 0.0042080
0.100 0.0500 1 0.0039510
0.050 0.0250 1 0.0033609
0.025 0.0125 1 0.0026941
0.010 0.0100 1 0.0019036
0.010 0.0100 10 3.4213e-007
0.020 0.0100 10 4.0654e-007
0.040 0.0100 10 4.6978e-007
0.010 0.0100 20 1.5533e-011
0.020 0.0100 20 1.8457e-011
0.040 0.0100 20 2.1328e-011

Crank-fiicolson method [ T=1 ;=2 7464 h=0.05 :k=0.025 error=0 0033609
0.1
T T T T T T L I

—¥— exact solution

— Fractional Crank-Nicolson solution

a1 02 0.3 04 05 06 07 08 09
X

Figure 2 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example
problem with At = 0.025 and h = 0.05 at time T = 1.0.
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Crank-Nicolson method [ T=1 ;=19.9054, /=001 ;k=0.07; eror=0.0072036
01
T T I I T I

I
—¥— exsct soiution

m— Fractional Cranl-Micolson solution
0.09 -

0.08

0.o7

0.06

0.04

0.03

0.02

0.

0.1 02 0.3 04 0.5 06 0.7 0g 0.9
%

Figure 3 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example
problem with At = 0.01 and h = 0.01 at time T = 1.0.

% 10"” Crank-Micolson method ;endt=20 ;=13.9054; h=0.01 ;k=0.01; error=1.5533e-011
& T T T T T T T \

—*— exact solution

e Eractional Crank-Micolson method solution

01 nz 03 0.4 0.4 06 n7 0.4 09
®

Figure 4 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example
problem with At = 0.01 and h = 0.01 at time T = 20.
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¥ m"“ Crank-Nicolson method jendt=20 ;=57163; h=0.02 ;k=0.01; errar=1.8457e-011

& T T T

—3— exact solution

e Fractional Crank-Micolson method solution

0.1 0z 03 0.4

05 0.6 07 0.& 08
%

Figure 5 Comparison between exact and numerical fractional Crank-Nicolson solutions for the example
problem with At = 0.01 and h = 0.02 at time T = 20.

Conclusions

Crank-Nicolson finite difference method
using shifted Griinwald estimate is encountered to
find the approximate solution for fractional partial
differential  equations.  Two-step  Adomian
decomposition method is used to obtain the exact
solution. It is proved that the truncation error is in
the form  0(At?) + 0(h%) + O(h®At). The
proposed method is unconditionally stable and the
approximate solution based on fractional Crank-
Nicolson finite difference method converges to the
exact solution successfully.
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Appendix Two-step Adomian decomposition
algorithm

We adopt a two-step  Adomian
decomposition method to find the closed analytical
form solution for the problem (15) — (17). In the
light of this method (see [23-25]) we assume that

[ee]

=Y

n=0

(35)

to be the solution of (1).
Now, (1) using (4) and (5) can be rewritten as

Liu(x,t) = c(x)DFu(x, t) + s(x, t), (36)

where DZ(.) is the Riemann-Liouville derivative
a . . . .
of order a, L; = S isan invertible linear operator.

Thus Lt = fot(.)dt is the one fold integration

inverse operator.
Let us assume that f(x,t) has the following form
of Luo [24]:

f(x,©) = u(x,0) + L' (s(x 1)), (37)
where f has written by sum of three functions

f(x,t) = f;(x, ) +£,(x, ) +f5(x, 1). (38)

442
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Now we choose W, =f,, k=123 and
Y, =f—fi, where f; is a function that satisfies
initial and boundary conditions.

The two-step Adomian decomposition
recursive algorithm is as follows from the papers
[26-29]:

step 0: u, =¥
step 1: u; = ¥, + Lt (c(x)D%uy)
step 2: Up4q = Lit(c(x)D%u,) ,n > 1.

The practical solution will be the n-term
approximation ¢ ,

n-1

Ga=)u , nx1 (39)
~i=0

with

lim @, = u(x,t). (40)
n—-oo
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