Identification of Growth-related EST-Microsatellite Marker in Nile Tilapia (Oreochromis niloticus)

Sk Md Saeef Ul Hoque Chishty, Suwit Wuthisuthimethavee, Piyapong Chotipuntu, Sataporn Direkbusarakom


This study aimed to investigate the growth related EST-microsatellites marker in Nile tilapia. The frequency of allele and genotype of microsatellite marker concentrating on the association between these makers and growth related allele and genotype were studied. Nile tilapia of Thai strain was used. The broodstock were collected from five different fisheries stations in Thailand, Uttaradit, Pathum Thani, Phetchaburi, Buri Ram and Chumphon. The brood fish were reared to spawn and their offspring were reared for 83 days before they were utilized as the experimental samples. Nineteen EST-microsatellite markers were screened with isolated DNA samples considering fast and slow growth. Out of 19 loci, 14 loci namely OMO392, OMO051, OMO097, OMO072, OMO327, OMO277, OMO122, OMO193, OMO198, OMO200, OMO335, OMO374, OMO049, and OMO069 were found to be polymorphic using F1, F11, and F24 families of Chumphon and Petchaburi stations. Another 4 loci i.e. OMO059, OMO068, OMO315, and OMO337 were observed monomorphic. A total of 51 alleles out of 25 alleles of which the estimated allele frequency was above 0.25 whereas 41 alleles was more than 0.1 allele frequency. An association study for polymorphic loci using one way analysis of variance showed significant relationship (P<0.05) in A3 allele of the fast growth group. A substantial association of EST-microsatellite of OMO392 was identified. Besides, genotyping associations were further resulted 79 genotypes on the other hand 19 were estimated as the frequency exceeding 0.25. Correspondingly, no significant (P>0.05) genotypes were related with growth. Overall, association study of identified allele A3 which designates growth hormone related EST-microsatellite primer OMO392 is potential to facilitate marker assisted selection regarding fast growth of Nile tilapia.


EST-Microsatellite marker, Oreochromis niloticus, polymorhic loci, allele, genotype


Kamal, A. H. M. M., & Mair, G. C. (2005). Salinity tolerance in superior genotypes of tilapia, O. niloticus, O. mossambicus and their hybrids. Aquaculture, 247(1), 189-201.

FAO. (2010). Food and Agricultural Organization: Fisheries Statistics. Retrieved from

Tacon, A. G., & Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285(1), 146-158.

Yue, G., Lin, H., & Li, J. (2016). Tilapia is the fish for next-generation aquaculture. International Journal of Marine Science and Ocean Technology, 3(1), 11-13.

Cressey, D. (2009). Aquaculture: future fish. Nature News, 458(7237), 398-400.

Fitzsimmons, K. M. (2016). Global Tilapia Market updates 2015. World Aquaculture Society, Las Vegas, NV: World Aquaculture Society.

Nguyen, N. H. (2016). Genetic improvement for important farmed aquaculture species with a reference to carp, tilapia and prawns in Asia: achievements, lessons and challenges. Fish and Fisheries, 17(2), 483-506.

Uraiwan, S. (1988). Selective breeding and genetic improvement of Nile tilapia. Thai Fish. Gaz. 41 (6): 575-580.

Metzker, M. L. (2010). Sequencing technologies--the next generation. Nature reviews. Genetics, 11(1), 31.

Sonesson, A. K. (2010). Genomic selection for aquaculture: Principles and procedures. In Next generation sequencing and whole genome selection in aquaculture, Oxford, U.K.: Wiley-Blackwell.

Yue, G. H. (2014). Recent advances of genome mapping and marker-assisted selection in aquaculture. Fish and Fisheries, 15(3), 376-396.

Sonesson, A. K. (2003). Possibilities for marker-assisted selection in fish breeding schemes. In Proceedings of the International Workshop of Marker Assisted Selection. Food and Agriculture Organization of the United Nations, Turin, Italy (pp. 62-65).

Al-Atiyat, R. M., Tabbaa, M. J., Salameh, N. M., Tarawneh, K. A., Al-Shmayla, L., & Al-Tamimie, H. J. (2012). Analysis of genetic variation of fat tailed-sheep in southern region of Jordan. Asian Journal of Animal and Veterinary Advances, 7(5), 376-389.

Wada, K. T. (1986). Genetic selection for shell traits in the Japanese pearl oyster. Aquaculture, 57(1-4), 171-176.

Gupta, M. V., & Acosta, B. O. (2004). From drawing board to dining table: the success story of the GIFT project. NAGA, WorldFish Center Quarterly, 27(3-4), 4-14.

Saha, M. C., Mian, M. R., Eujayl, I., Zwonitzer, J. C., Wang, L., & May, G. D. (2004). Tall fescue EST-SSR markers with transferability across several grass species. Theoretical and Applied Genetics, 109(4), 783-791.

Chabane, K., Ablett, G. A., Cordeiro, G. M., Valkoun, J., & Henry, R. J. (2005). EST versus genomic derived microsatellite markers for genotyping wild and cultivated barley. Genetic Resources and Crop Evolution, 52(7), 903-909.

Liu, F., Sun, F., Li, J., Xia, J. H., Lin, G., Tu, R. J., & Yue, G. H. (2013). A microsatellite-based linkage map of salt tolerant tilapia (O. mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC genomics, 14(1), 58.

Franco, G. R., Adams, M. D., Soares, M. B., Simpson, A. J., Venter, J. C., & Pena, S. D. (1995). Identification of new Schistosoma mansoni genes by the EST strategy using a directional cDNA library. Gene, 152(2), 141-147.

Rise, M. L., von Schalburg, K. R., Brown, G. D., Mawer, M. A., Devlin, R. H., Kuipers, N., ... & Hunt, P. (2004). Development and application of a salmonid EST database and cDNA microarray: data mining and interspecific hybridization characteristics. Genome Research, 14(3), 478-490.

Liu, S., Vijayendran, D., & Bonning, B. C. (2011). Next generation sequencing technologies for insect virus discovery. Viruses, 3(10), 1849-1869.

Zhu, H. P., Liu, Z. G., Lu, M. X., Gao, F. Y., Ke, X. L., & Huang, Z. H. (2015). Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia. Genetics and Molecular Research, 14(3), 10308-10314.

Wuthisuthimethavee, S. (1999). Master Thesis Graduate School, Kasetsart University.

Dong, S., Kong, J., Meng, X., Zhang, Q., Zhang, T., & Wang, R. (2008). Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus chinensis). Aquaculture, 282(1), 138-141.

Zheng, X., Kuang, Y., Lü, W., Cao, D., & Sun, X. (2014). Transcriptome-derived EST–SSR markers and their correlations with growth traits in crucian carp. Fisheries science, 80(5), 977-984.

Liu, F., Sun, F., Xia, J. H., Li, J., Fu, G. H., Lin, G., ... & Yue, G. H. (2014). A genome scan revealed significant associations of growth traits with a major QTL and GHR2 in tilapia. Scientific reports, 4.

Pérez-Sánchez, J., & Le Bail, P. Y. (1999). Growth hormone axis as marker of nutritional status and growth performance in fish. Aquaculture, 177(1), 117-128.

Andersson, L., & Andersson, L. (2001). Genetic dissection of phenotypic diversity in farm animals. Nature Reviews Genetics, 2(2), 130-138.

Arranz, S. E., Sciara, A. A., Botta, P., Cerutti, P., Tobin, M., & Somoza, G. M. (2008). Growth hormone-insuline-like growth factor-I system in pejerrey Odontesthes bonariensis. Revista Brasileira De Zootecnia, 37(SPE), 1-7.

Forsyth, I. A., & Wallis, M. (2002). Growth hormone and prolactin molecular and functional evolution. Journal of Mammary Gland Biology and Neoplasia, 7(3), 291-312.

Pérez-Sánchez, J. (2000). The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream: a short review. Fish

Asaduzzaman, M., Ikeda, D., Kader, M. A., Kinoshita, S., Ghaffar, M. A., & Abol-Munafi, A. B. (2017). Cellular muscle growth and molecular cloning and expression of growth-related gene of Malaysian Mahseer Tor tambroides larvae fed with live and formulated feeds in indoor nursery rearing system. Aquaculture Reports, 5, 1-9.

Huang, C. W., Li, Y. H., Hu, S. Y., Chi, J. R., Lin, G. H., Lin, C. C., ... & Liu, F. G. (2012). Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia. Journal of Animal Science, 90(12), 4266-4279.

Wang, D. S., Jiao, B., Hu, C., Huang, X., Liu, Z., & Cheng, C. H. (2008). Discovery of a gonad-specific IGF subtype in teleost. Biochemical and Biophysical Research Communications, 367(2), 336-341.

Hulata, G., Wohlfarth, G. W., & Halevy, A. (1986). Mass selection for growth rate in the Nile tilapia. Aquaculture, 57(1-4), 177-184.

Wang, D., Qin, J., Jia, J., Yan, P., & Li, W. (2017). Pou1f1, the key transcription factor related to somatic growth in tilapia, is regulated by two independent post-transcriptional regulation mechanisms. Biochemical and Biophysical Research Communications, 483(1), 559-565.

Ma, H., Jiang, W., Liu, P., Feng, N., Ma, Q., Ma, C., ... & Ma, L. (2014). Identification of transcriptome-derived microsatellite markers and their association with the growth performance of the mud crab (Scylla paramamosain). PloS one, 9(2), e89134.

Pereira, A. P., Alencar, M. M. D., Oliveira, H. N. D., & Regitano, L. C. D. A. (2005). Association of GH and IGF-1 polymorphisms with growth traits in a synthetic beef cattle breed. Genetics and Molecular Biology, 28(2), 230-236.

Sánchez-Ramos, I., Cross, I., Mácha, J., Martínez-Rodríguez, G., Krylov, V., & Rebordinos, L. (2012). Assessment of tools for marker-assisted selection in a marine commercial species: significant association between MSTN-1 gene polymorphism and growth traits. The Scientific World Journal, 2012.

Velan, A., Hulata, G., Ron, M., Slosman, T., Shirak, A., & Cnaani, A. (2015). Association between polymorphism in the Prolactin I promoter and growth of tilapia in saline-water. Aquaculture Reports, 1, 5-9.

Streelman, J. T., & Kocher, T. D. (2002). Microsatellite variation associated with prolactin expression and growth of salt-challenged tilapia. Physiological Genomics, 9(1), 1-4.

Li, C. Y., Chiang, T. Y., Chiang, Y. C., Hsu, H. M., Ge, X. J., Huang, C. C., ... & Hung, K. H. (2016). Cross-species, amplifiable EST-SSR markers for Amentotaxus species obtained by next-generation sequencing. Molecules, 21(1), 67.

Ma, D., Ma, A., Huang, Z., Wang, G., Wang, T., Xia, D., & Ma, B. (2016). Transcriptome analysis for identification of genes related to gonad differentiation, growth, immune response and marker discovery in the turbot (Scophthalmus maximus). PloS one, 11(2), e0149414.

Manzon, L. A. (2002). The role of prolactin in fish osmoregulation: a review. General and Comparative Endocrinology, 125(2), 291-310.

Fries, R., Hanset, R., & Georges, M. (1997). A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71.

Cnaani, A., Zilberman, N., Tinman, S., Hulata, G., & Ron, M. (2004). Genome-scan analysis for quantitative trait loci in an F2 tilapia hybrid. Molecular Genetics and Genomics, 272(2), 162-172.

Chi, J. R., Huang, C. W., Wu, J. L., & Hu, S. Y. (2014). Prolactin I Microsatellite as Genetic markers for characterization of five Oreochromis Tilapia Species and two Oreochromis niloticus strains. Journal of Aquaculture Research and Development, 5(251), 2.


  • There are currently no refbacks.

Online ISSN: 2228-835X

Last updated: 13 February 2019