Plant-based Therapy - How does it Work on Parasites?

Authors

  • Nadiah Syafiqah Binti Nor AZMAN School of Pharmacy, University of Nottingham Malaysia Campus, Kuala Lumpur
  • Tooba MAHBOOB Department of Parasitology, University of Malaya, Kuala Lumpur
  • Tan TIAN-CHYE Department of Parasitology, University of Malaya, Kuala Lumpur
  • Chandramathi SAMUDI Department of Medical Microbiology, University of Malaya, Kuala Lumpur
  • Veeranoot NISSAPATORN School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161
  • Christophe WIART School of Pharmacy, University of Nottingham Malaysia Campus, Kuala Lumpur

DOI:

https://doi.org/10.48048/wjst.2018.4591

Keywords:

Natural products, Acanthamoeba, Leishmania, Plasmodium

Abstract

Parasites remain one of the most important causes of morbidity and mortality in the tropical landscape. Of these, granulomatous amoebic encephalitis (GAE), leishmaniasis and malaria are 3 common parasitic diseases which can be fatal if left untreated. The available drugs seem to be ineffective as resistant strains have emerged in recent years. It is timely for medicinal plants have been given much attention as an alternative for the available chemotherapeutic drugs. This review was conducted to evaluate the anti-parasitic effects of medicinal plants from different parts of the world. It was found that large numbers of plants showed strong anti-parasitic potential; Clerodendrum rotundifolium Oliv. leaves water fraction, Clerodendrum rotundifolium Oliv. leaves methanol fraction and Microglossa pyrifolia showed strong anti-malarial activity with IC50 of 0.01, 0.02 and 0.05 µg/ml in vitro. Limouni olive is a strong amoebicidal agent with IC50 of 5.11 µg/ml. Ethanol extracts from H. stignocarpa leaves (4.69 µg/ml), J. cuspidifolia leaves (10.96 µg/ml) and Jacaranda caroba leaves (13.22 µg/ml) showed strong activity against Leishmania spp. with IC50 values lower than 25 µg/ml. In conclusion, these promising results suggest that future research on medicinal plants needs to be done to identify its active constituents, cytotoxicity, effectivity and feasibility to be utilized against infections caused by these parasites. Furthermore, phytochemical investigations should be undertaken to achieve the effectiveness of therapeutic agents particularly in limited resource settings.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Veeranoot NISSAPATORN, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80161

Department of Parasitology

References

Centers for Disease Control and Prevention (CDC): About Parasites, Available at: https://www.cdc.gov/parasites/about.html, accessed December 2016.

J Plutzer and P Karanis. Neglected waterborne parasitic protozoa and their detection in water. Water Res. 2016; 101, 318-32.

GM Walsh, AW Shih, Z Solh, M Golder, P Schubert, M Fearon and WP Sheffield. Blood-borne pathogens: A Canadian Blood Services Centre for Innovation Symposium. Transfus. Med. Rev. 2016; 30, 53-68.

P Karanis, C Kourenti and H Smith. Waterborne transmission of protozoan parasites: A worldwide review of outbreaks and lessons learnt. J. Water Health 2007; 5, 1-38.

S Baldursson and P Karanis. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks: An update 2004-2010. Water Res. 2011; 45, 6603-14.

NM El-Sayed, KA Ismail, SAEG Ahmed and MH Hetta. In vitro amoebicidal activity of ethanol extracts of Arachis hypogaea L., Curcuma longa L. and Pancratium maritimum L. on Acanthamoeba castellanii cysts. Parasitol. Res. 2012; 110, 1985-92.

J Hay, CM Kirkness, DV Seal and P Wright. Drug resistance and Acanthamoeba keratitis: The quest for alternative antiprotozoal chemotherapy. Eye 1994, 8, 555-63.

TD Lindquist, NA Sher and DJ Doughman. Clinical signs and medical therapy of early Acanthamoeba keratitis. Arch. Ophthalmol. 1988, 106, 73-7.

P Wright, D Warhurst and BJ Jones. Acanthamoeba keratitis successfully treated medically. Brit. J. Ophthalmol. 1985; 69, 778-82.

World Health Organization (WHO): Fact Sheet World Malaria Report 2015, Available at: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en, accessed March 2016.

Centers for Disease Control and Prevention (CDC): Malaria Parasites Biology, Available at: https://www.cdc.gov/malaria/about/biology/parasites.html, accessed December 2016.

N Singh, NK Kaushik, D Mohanakrishnan, SK Tiwari and D Sahal. Antiplasmodial activity of medicinal plants from Chotanagpur plateau, Jharkhand, India. J. Ethnopharmacol. 2015; 165, 152-62.

World Health Organization (WHO): Leishmaniasis Fact Sheet, Available at: http://www.who.int/leishmaniasis/en, accessed March 2016.

AA Zahir, AA Rahuman, S Pakrashi, D Ghosh, A Bagavan, C Kamaraj, G Elango and M Chatterjee. Evaluation of antileishmanial activity of South Indian medicinal plants against Leishmania donovani. Exp. Parasitol. 2012; 132, 180-4.

FW Muregi, SC Chhabra, ENM Njagi, CC Langat-Thoruwa, WM Njue, ASS Orago, SA Omar and IO Ndiege. In vitro antiplasmodial activity of some plants used in Kisii, Kenya against malaria and their chloroquine potentiation effects. J. Ethnopharmacol. 2003; 84, 235-9.

R Muganga, L Angenot, M Tits and M Frédérich. Antiplasmodial and cytotoxic activities of Rwandan medicinal plants used in the treatment of malaria. J. Ethnopharmacol. 2010; 128, 52-7.

IK Köhler and CK Jenett-Siems. Herbal remedies traditionally used against malaria in Ghana: Bioassay-guided fractionation of Microglossa pyrifolia (Asteraceae). Zur. Nat. 2002; 57, 1022-7.

M Dell'Agli, GV Galli, S Parapini, N Basilico, D Taramelli, A Said, K Rashed and E Bosisio. Anti-plasmodial activity of Ailanthus excelsa. Fitoterapia 2008; 79, 112-6.

FW Muregi, A Ishih, T Miyase, T Suzuki, H Kino, T Amano, GM Mkoji and M Terada. Antimalarial activity of methanolic extracts from plants used in Kenyan ethnomedicine and their interactions with chloroquine (CQ) against a CQ-tolerant rodent parasite, in mice. J. Ethnopharmacol. 2007; 111, 190-5.

HT Simonsen, JB Nordskjold, UW Smitt, U Nyman, P Palpu, P Joshi and G Varughese. In vitro screening of Indian medicinal plants for antiplasmodial activity. J. Ethnopharmacol. 2001; 74, 195-204.

MM Adia, SN Emami, R Byamukama, I Faye and AK Borg-Karlson. Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. J. Ethnopharmacol. 2016; 186, 14-9.

TG Ribeiro, MA Chávez-Fumagalli, DG Valadares, JR Franca, PS Lage, MC Duarte, PH Andrade, VT Martins, LE Costa, AL Arruda and AA Faraco. Antileishmanial activity and cytotoxicity of Brazilian plants. Exp. Parasitol. 2014; 143, 60-8.

BN Lenta, CR Vonthron-Sénécheau, F Sohd, F Tantangmo, S Ngouela, M Kaiser, E Tsamo, R Anton and B Weniger. In vitro antiprotozoal activities and cytotoxicity of some selected Cameroonian medicinal plants. J. Ethnopharmacol. 2007; 111, 8-12.

E Malatyali, B Tepe, S Degerli and S Berk. In vitro amoebicidal activities of Satureja cuneifolia and Melissa officinalis on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res. 2012; 110, 2175-80.

E Malatyali, B Tepe, S Degerli, S Berk and HA Akpulat. In vitro amoebicidal activity of four Peucedanum species on Acanthamoeba castellanii cysts and trophozoites. Parasitol. Res. 2012; 110, 167-74.

C Ródio, D da Rocha Vianna, KP Kowalski, LF Panatieri, G von Poser and MB Rott. In vitro evaluation of the amebicidal activity of Pterocaulon polystachyum (Asteraceae) against trophozoites of Acanthamoeba castellanii. Parasitol. Res. 2008; 104, 191-4.

ZA Polat, B Tepe and A Vural. In vitro effectiveness of Thymus sipyleus subsp. sipyleus var. sipyleus on Acanthamoeba castellanii and its cytotoxic potential on corneal cells. Parasitol. Res. 2007; 101, 1551-5.

ZA Polat, A Vural, B Tepe and A Cetin. In vitro amoebicidal activity of four Allium species on Acanthamoeba castellanii and their cytotoxic potentials on corneal cells. Parasitol. Res. 2007; 101, 397-402.

B Tepe, E Malatyali, S Degerli and S Berk. In vitro amoebicidal activities of Teucrium polium and T. chamaedrys on Acanthamoeba castellanii trophozoites and cysts. Parasitol. Res. 2012; 110, 1773-8.

MJ Bapela, JM Meyer and M Kaiser. In vitro antiplasmodial screening of ethnopharmacologically selected South African plant species used for the treatment of malaria. J. Ethnopharmacol. 2014; 156, 370-3.

A Bargougui, P Champy, S Triki, C Bories, P Le Pape and PM Loiseau. Antileishmanial activity of Opuntia ficus-indica fractions. Biomed. Prev. Nutr. 2014; 4, 101-4.

F Benoit-Vical, A Valentin, V Cournac, Y Pélissier, M Mallié and JM Bastide. In vitro antiplasmodial activity of stem and root extracts of Nauclea latifolia SM (Rubiaceae). J. Ethnopharmacol.1998; 6, 173-8.

FG Braga, MLM Bouzada, RL Fabri, MDO Matos, FO Moreira, E Scio and ES Coimbra. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil. J. Ethnopharmacol. 2007; 111, 396-402.

JC Chukwujekwu, CA de Kock, PJ Smith, FRV Heerden and JV Staden. Antiplasmodial activity of compounds isolated from Erythrina caffra. South Afr. J. Bot. 2016; 106, 101-3.

S Debenedetti, L Muschietti, C van Baren, M Clavin, A Broussalis, V Martino, PJ Houghton, D Warhurst and J Steele. In vitro antiplasmodial activity of extracts of Argentinian plants. J. Ethnopharmacol. 2002; 80, 163-6.

S Degerli, B Tepe, A Celiksoz, S Berk and E Malatyali. In vitro amoebicidal activity of Origanum syriacum and Origanum laevigatum on Acanthamoeba castellanii cysts and trophozoites. Exp. Parasitol. 2012; 13, 20-4.

MC Duarte, GS Tavares, DG Valadares, DP Lage, TG Ribeiro, LM Lage, MR Rodrigues, AA Faraco, M Soto, ES da Silva and MAC Fumagalli. Antileishmanial activity and mechanism of action from a purified fraction of Zingiber officinalis Roscoe against Leishmania amazonensis. Exp. Parasitol. 2016, 166, 21-8.

S Hout, A Chea, SS Bun, R Elias, M Gasquet, P Timon-David, G Balansard and N Azas. Screening of selected indigenous plants of Cambodia for antiplasmodial activity. J. Ethnopharmacol. 2006; 107, 12-8.

I Khan, K Ahmad, AT Khalil, J Khan, YA Khan, MS Saqib, MN Umar and H Ahmad. Evaluation of antileishmanial, antibacterial and brine shrimp cytotoxic potential of crude methanolic extract of Herb Ocimum basilicum (Lamiacea). J. Tradit. Chin. Med. 2015, 35, 316-22.

F Kheirandish, B Delfan, H Mahmoudvand, N Moradi, B Ezatpour, F Ebrahimzadeh and M Rashidipour. Antileishmanial, antioxidant, and cytotoxic activities of Quercus infectoria Olivier extract. Biomed. Pharmacother. 2016; 82, 208-15.

EVM Kigondu, GM Rukunga, JW Gathirwa, BN Irungu, NM Mwikwabe, GM Amalemba, SA Omar and PG Kirira. Antiplasmodial and cytotoxicity activities of some selected plants used by the Maasai community, Kenya. South Afr. J. Bot. 2011; 77, 725-9.

M Lamidi, C DiGiorgio, F Delmas, A Favel, CE Mve-Mba, ML Rondi, E Ollivier, L Nze-Ekekang and G Balansard. In vitro cytotoxic, antileishmanial and antifungal activities of ethnopharmacologically selected Gabonese plants. J. Ethnopharmacol. 2005; 102, 185-90.

DRA Mans, T Beerens, I Magali, RC Soekhoe, GJ Schoone, K Oedairadjsingh, JA Hasrat, EV den Bogaart and HDFH Schallig. In vitro evaluation of traditionally used Surinamese medicinal plants for their potential anti-leishmanial efficacy. J. Ethnopharmacol. 2016, 180, 70-7.

AN Messi, JN Mbing, JT Ndongo, MA Nyegue, AT Tchinda, FL Yemeda, M Frédérich and DE Pegnyemb. Phenolic compounds from the roots of Ochna schweinfurthiana and their antioxidant and antiplasmodial activities. Phytochem. Lett. 2016, 17, 119-25.

B Nikmehr, H Ghaznavi, A Rahbar, S Sadr and S Mehrzadi. In vitro anti-leishmanial activity of methanolic extracts of Calendula officinalis flowers, Datura stramonium seeds, and Salvia officinalis leaves. Chinese J. Nat. Med. 2014; 12, 423-7.

D Paik, P Das, T De and T Chakraborti. In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): leishmanial serine protease (s) as putative target. Exp. Parasitol. 2014; 146, 11-9.

L Pan, CM Lezama-Davila, AP Isaac-Marquez, EP Calomeni, JR Fuchs, AR Satoskar and AD Kinghorn. Sterols with antileishmanial activity isolated from the roots of Pentalinon andrieuxii. Phytochemistry 2012; 82, 128-35.

S Rodrı́guez-Zaragoza, C Ordaz, G Avila, JL Muñoz, A Arciniegas and AR de Vivar. In vitro evaluation of the amebicidal activity of Buddleia cordata (Loganiaceae, HBK) on several strains of Acanthamoeba. J. Ethnopharmacol. 1999; 66, 327-34.

GM Rukunga, JW Gathirwa, SA Omar, FW Muregi, CN Muthaura, PG Kirira, GM Mungai and WM Kofi-Tsekpo. Anti-plasmodial activity of the extracts of some Kenyan medicinal plants. J. Ethnopharmacol. 2009; 121, 282-5.

IP Sauter, GE Rossa, AM Lucas, SP Cibulski, PM Roehe, LAA da Silva, MB Rott, RMF Vargas, E Cassel and GL von Poser. Chemical composition and amoebicidal activity of Piper hispidinervum (Piperaceae) essential oil. Ind. Crops Prod. 2012; 40, 292-5.

I Sifaoui, A López-Arencibia, JC Ticona, CM Martín-Navarro, M Reyes-Batlle, M Mejri, J Lorenzo-Morales, AI Jiménez, B Valladares, I Lopez-Bazzocchi and M Abderabba. Bioassay guided isolation and identification of anti-Acanthamoeba compounds from Tunisian olive leaf extracts. Exp. Parasitol. 2014; 145, S111-S114.

J Leonardi-Bee, D Pritchard and J Briton. Asthma and current intestinal parasite infection: Systematic review and meta-analysis. Am. J. Respir. Crit. Care Med. 2006; 174, 514-23.

Downloads

Published

2017-11-03

How to Cite

AZMAN, N. S. B. N., MAHBOOB, T., TIAN-CHYE, T., SAMUDI, C., NISSAPATORN, V., & WIART, C. (2017). Plant-based Therapy - How does it Work on Parasites?. Walailak Journal of Science and Technology (WJST), 15(8), 551–559. https://doi.org/10.48048/wjst.2018.4591