A Reliable Algorithm for Fractional Schrödinger Equations

Abid KAMRAN, Umer HAYAT, Ahmet YILDIRIM, Syed Tauseef MOHYUD-DIN

Abstract


In this paper, the Homotopy Perturbation Method (HPM) is applied to find exact solutions of time-fractional Schrödinger equations. Numerical results coupled with graphical representations explicitly reveal the complete reliability and efficiency of the proposed algorithm.


Keywords


Homotopy perturbation method, fractional Schrödinger partial differential equations, nonlinear problems, exact solution

Full Text:

PDF

References


S Abbasbandy. Numerical method for non-linear wave and diffusion equations equation by the variational iteration method. Int. J. Numer. Meth. Eng. 2008; 73, 1836-43.

S Abbasbandy. Numerical solutions of nonlinear Klein-Gordon equation by variational iteration method. Int. J. Numer. Meth. Eng. 2007; 70, 876-81.

MA Abdou and AA Soliman. New applications of variational iteration method. Physica D 2005; 211, 1-8.

A Ghorbani and JS Nadjfi. He’s homotopy perturbation method for calculating Adomian’s polynomials. Int. J. Nonlinear Sci. Num. Simul. 2007; 8, 229-332.

JH He. Some asymptotic methods for strongly nonlinear equation. Int. J. Mod. Phys. 2006; 20, 1144-99.

JH He. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Tech. 1999; 15, 86-90.

WX Ma and RG Zhou. Nonlinearization of spectral problems for the perturbation KdV systems. Physica A 2001; 296, 60-74.

WX Ma and M Chen. Hamiltonian and quasi-Hamiltonian structures associated with semi-direct sums of Lie algebras. J. Phys. A: Math. Gen. 2006; 39, 10787-801.

S Momani. An algorithm for solving the fractional convection-diffusion equation with nonlinear source term. Comm. Nonlinear Sci. Numer. Simulat. 2007; 12, 1283-90.

ST Mohyud-Din, MA Noor and KI Noor. Some relatively new techniques for nonlinear problems. Math. Probl. Eng. 2009; 2009, Article ID 234849.

ST Mohyud-Din and MA Noor. Homotopy perturbation method for solving fourth-order boundary value problems. Math. Probl. Eng. 2007; 2007, Article ID 98602.

ST Mohyud-Din and MA Noor. Homotopy perturbation method for solving partial differential equations. Zeitschrift für Naturforschung A 2008; 64a, 1-14.

ST Mohyud-Din. Variational iteration techniques for boundary value problems. VDM Verlag, ISBN 978-3-639-27664-0, 2010.

ST Mohyud-Din, MA Noor, KI Noor and MM Hosseini. Solution of singular equations by He’s variational iteration method. Int. J. Nonlinear Sci. Numer. Simulat. 2010; 11, 81-6.

ST Mohyud-Din, MA Noor and KI Noor. Travelling wave solutions of seventh-order generalized KdV equations using He’s polynomials. Int. J. Nonlinear Sci. Numer. Simulat. 2009; 10, 223-9.

Z Odibat and S Momani. Numerical solution of Fokker-Planck equation with space-and time-fractional derivatives. Phys. Lett. A 2007; 369, 349-58.

I Podlubny. Fractional differential equations. Academic Press, New York, 1999.

A Yildirim, H Koçak. Homotopy perturbation method for solving the space-time fractional advection-dispersion equation. Adv. Water Resour. 2009; 32, 1711-6.

A Yildirim and ST Mohyud-Din. Analytical approach to space and time fractional Burger’s equations. Chin. Phys. Lett. 2010; 27, Article ID 090501.

AM Wazwaz. The modified decomposition method and Pade´s approximants for solving Thomas-Fermi equation. Appl. Math. Comput. 1999; 105, 11-9.

L Xu. He’s homotopy perturbation method for a boundary layer equation in unbounded domain. Comput. Math. Appl. 2007; 54, 1067-70.


Refbacks

  • There are currently no refbacks.




http://wjst.wu.ac.th/public/site/images/admin/image012_400

Online ISSN: 2228-835X

http://wjst.wu.ac.th

Last updated: 26 October 2017