The Minimum-Maximum Weather Temperature Difference Effect on Dengue Incidence in Sleman Regency of Yogyakarta, Indonesia

Authors

  • Tri Wulandari KESETYANINGSIH 1,*, Sri ANDARINI2, Sudarto SUDARTO3 and Henny PRAMOEDYO4 1Department of Parasitology, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Yogyakarta 55183, Indonesia 2Department of Public Health, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia 3Department of Soil Sciences, Faculty of Agriculture, Brawijaya University, Malang 65145, Indonesia 4Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang 65145, Indonesia
  • Sri ANDARINI Department of Public Health, Faculty of Medicine, Brawijaya University, Malang 65145
  • Sudarto SUDARTO Department of Soil Sciences, Faculty of Agriculture, Brawijaya University, Malang 65145
  • Henny PRAMOEDYO Department of Statistics, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang 65145

DOI:

https://doi.org/10.48048/wjst.2018.2277

Keywords:

Aedes aegypti, daily temperature fluctuation, dengue incidence

Abstract

Dengue is a viral disease, transmitted by Aedes aegypti, and is still a big problem in tropical areas, including Indonesia, where the temperatures are relatively warm and suitable for vector mosquito life. In the dry season, the day and night temperature differences are quite sharp and, at that time, the number of dengue cases is low. In this study, the difference between day and night temperature is referred to as daily temperature fluctuation and represented by the maximum and minimum temperature difference in each month. The research was conducted in Sleman Regency, Yogyakarta Province, Indonesia, as an endemic area, and the data were collected from 4 endemic areas in Sleman; Gamping, Godean, Sleman, and Depok districts. The data collected were quantitative with serial data retrospective. Secondary data of monthly dengue incidence in the years 2008 - 2013 were obtained from the Regency Health Office and used as a dependent variable. Monthly minimum and maximum temperatures in the same periods were obtained from the Agency of Meteorology, Climatology, and Geophysics. The differences between the minimum and maximum temperatures were calculated, to be used as independent variable data, and represented the different day and night temperatures of the month. Data were analyzed by using linear regressions to determine the influence of fluctuating temperature on the incidence of dengue. Results show that fluctuating temperature affected dengue incidence in the districts of Godean (p = 0.000; R2 = 0.207) and Gamping (p = 0.006; R2 = 0.125), but did not affect it in Sleman (p = 0.164) or Depok (p = 0.075). The data suggests that fluctuating temperature affected dengue incidence with powers of 20.7 % in Godean and 12.5 % in Gamping.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

IW Supartha. Pengendalian Terpadu Vektor Virus Demam Berdarah Dengue, Aedes aegypti (Linn.) dan Aedes albopictus (Skuse) (Diptera: Culicidae) (in Indonesia). Scientific Meeting on Dies Natalis Udayana, 3-6 September 2008.

M Yasuno and RJ Tonn. A study of biting habits of Aedes aegypti in Bangkok, Thailand. Bull. World Health Organ. 1970; 43, 319-25.

L Lambrechts, P Krijn, PT Fansiri, LB Carrington, LD Kramer, MB Thomas, and TW Scott. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc. Natl. Acad. Sci. 2011; 108, 7460-5.

DT Mourya, P Yadav and AC Mishra. Effect of temperature stress on immature stages and susceptibility of Aedes Aegypti mosquitoes to chikungunya virus. Am. J. Trop. Med. Hyg. 2004; 70, 346-50.

CP Pant and M Yasuno. Field Studies on the Gonotrophic Cycle of Aedes Aegypti in Bangkok, Thailand. J. Med. Entomol. 1973, 2, 219-23.

D Goindin, C Delannay, C Ramdini, J Gustave and F Fouque. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS One 2015; 10, e0135489.

M Chan and MA Johansson. The incubation periods of dengue viruses. PLoS One 2012; 7, e50972.

LB Carrington, MV Armijos, L Lambrechts and TW Scott. Fluctuations at a low mean temperature accelerate dengue virus transmission by Aedes aegypti. PLoS Negl. Trop. Dis. 2013; 7, e2190.

MM Sintorini. Pengaruh iklim terhadap kasus demam berdarah dengue (in Indonesia). J. Kes. Mas. Nas. 2007; 2, 11-8.

MA Wirayoga. Hubungan kejadian demam berdarah dengue dengan iklim di kota Semarang tahun 2006-2011 (in Indonesia). Unnes. J. Public Health 2013; 2, 1-9.

N Yussanti, M Salamah and H Kuswanto. Pemodelan Wabah Demam Berdarah Dengue (DBD) di Jawa Timur Berdasarkan Faktor Iklim dan Sosio-ekonomi dengan Pendekatan Regresi Panel Semiparametrik (in Indonesia). Available at: http://digilib.its.ac.id/public/ITS-Undergraduate-17975-1308100082-Paper.pdf, accessed January 2016.

J Ariati and DA Musadad. Incidence of dengue haemorrhagic fever (DHF) and climate factors in Batam City of Kepulauan Riau Province. J. Ekol. Kes. 2012; 11, 279-86.

TW Kesetyaningsih and L Suryani. The influence of climate factors to incidence rate of dengue in Sleman district of Yogyakarta. In: Proceedings of the International Conference on Sustainable Innovation. Yogyakarta, 2014.

MD Mangguang. Analisis epidemologi penyakit demam berdarah dengue melalui pendekatan spasial temporal dan hubungannya degan faktor iklim di kota padang tahun 2008-2010 (in Indonesia). Forum Inform. Kesehatan Indonesia 2013; 1, 294-311.

C Karmalkar, MN McSweeney and G Lizcano. UNDP Climate Change Country Profiles Indonesia. Available at: http://country-profiles.geog.ox.ac.uk, accessed January 2016.

FJC González, IR Lake and G Bentham. Climate variability and dengue fever in warm and humid Mexico. Am. J. Trop. Med. Hyg. 2011; 84, 757-63.

Local Government of Sleman. RKPD Kabupaten Sleman Tahun 2014 (in Indonesia). Available at: http://bappeda.slemankab.go.id/wp-content/uploads/2013/07/bab-II.pdf, accessed January 2016.

WHO. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. 2nd ed. World Health Organization, Geneva, 1997.

WHO. Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control. Available at: http://www.who.int/csr/resources/publications/dengue/Denguepublication/en, accessed January 2016.

A Mohammed and DD Chadee. Effects of different temperature regimens on the development of Aedes aegypti (L.) (Diptera: Culicidae) mosquitoes. Acta Tropica 2011; 119, 38-43.

EJ Muturi, M Jr Blackshear and A Montgomer. Temperature and density-dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J. Vector Ecol. 2012; 37, 154-61.

CC Jucht, PE Parham, A Saddler, JC Koella and MG Basáñez. Temperature during Larval Development and adult Maintenance Influences the Survival of Anopheles gambiae s.s. Parasite and Vectors. Available at: http://www.parasitesandvectors.com/content/7/1/489, accessed January 2016.

DM Watts, DS Burke, BA Harrison, RE Whitmire and A Nisalak. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am. J. Trop. Med. Hyg. 1987; 36, 143-52.

R Machiel-de-Frietas. A Review on the ecological determinants of Aedes aegypti (Diptera: Culicidae) vectorial capacity. Oecol. Australis 2010; 14, 726-36.

AA Umoh, AO Akpan and BB Jacob. Rainfall and relative humidity occurrence patterns in Uyo Metropolis, Akwa Ibom State, South-South Nigeria. IOSR J. Eng. 2013; 3, 27-31.

LB Carrington, MV Armijos, L Lambrechts, CM Barker and TW Scott. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS One 2013; 8, e58824.

DV Canyon, JLK Hii and R Muller. The frequency of host biting and its effect on oviposition and survival in Aedes aegypti (Diptera: Culicidae). Bull. Entomol. Res. 1999; 89, 35-9.

K Subagia, AAS Sawitri and DN Wirawan. Lingkungan dalam Rumah, Mobilitas dan Riwayat Kontak sebagai Determinan Kejadian Demam Berdarah Dengue di Denpasar Tahun 2012 (in Indonesia). Public Health Prev. Med. Arch. 2013; 1, 1-7.

A Wesolowski, T Qureshi, MF Boni, PR Sund, MA Johansson, SB Rasheed, K Engø-Monsen and CO Buckee. Impact of human mobility on the emergence of dengue epidemics in Pakistan. Proc. Natl. Acad. Sci. USA 2015; 112, 11887-92.

M Castro, L Sanchez, D Perez, C Sebrango, Z Shkedy and PV Stuyft. The relationship between economic status, knowledge on dengue, risk perceptions and practices. PLoS One 2013; 8, e81875.

YL Cheong, PJ Leitão and T Lakes. Assessment of land-use factors associated with dengue cases in Malaysia using boosted regression trees. Spatial Spatio Temporal Epidemiol. 2014; 10, 75-84.

WP Schmidt, M Suzuki, VD Thiem, RG White, A Tsuzuki, LM Yoshida, H Yanai, U Haque, LH Tho, DD Anh and K Ariyoshi. Population density, water supply, and the risk of dengue fever in Vietnam: Cohort study and spatial analysis. PLoS Med. 2011; 8, e1001082.

TH Tedy. Analisis faktor risiko perilaku masyarakat aterhadap kejadian demam berdarah dengue (DBD) di Kelurahan Helvetia Tengah Medan tahun 2005 (in Indonesia). J. Mutiara Kes. Indo. 2005; 1, 42-7.

A Roose. 2008, Hubungan Sosiodemografi dan Lingkungan dengan Kejadian Penyakit Demam Berdarah Dengue (DBD) di Kecamatan Bukit Raya Kota Pekanbaru (in Indonesia). M. Sc. Thesis. University of North Sumatera, Indonesia.

A Pristi. 2011, Analisis Faktor Risiko yang Berhubungan dengan Kejadian Demam Berdarah Dengue (DBD) di Kecamatan Tembalang Kota Semarang (in Indonesia). B. Sc. Thesis. Diponegoro University, Indonesia.

HJO Sigarlaki. Karakteristik, pengetahuan, dan sikap ibu terhadap penyakit demam berdarah dengue (in Indonesia). Berita Kedokteran Mas. 2007; 23, 148-53.

BC Yboa and LJ Labrague. Dengue knowledge and preventive practices among rural residents in Samar Province, Philippines. Am. J. Public Health Res. 2013; 1, 47-52.

TW Kesetyaningsih, HM Alislam and F Eka. Kepadatan larva Aedes aegypti di daerah endemis demam berdarah desa dan kota, hubungannya dengan pengetahuan dan perilaku masyarakat (in Indonesia). J. Mutiara Medika 2012; 12, 56-62.

J Stoler, SK Brodine, S Bromfield, JR Weeks and HP Scarlett. Exploring the relationships between dengue fever knowledge and Aedes aegypti breeding in St catherine Parish, Jamaica: A pilot of enhanced low-cost surveillance. Res. Reports Trop. Med. 2011; 2, 93-103.

A Ruliansyah, T Gunawan and SM Juwono. Pemanfaatan citra penginderaan jauh dan sistem informasi geografis untuk pemetaan daerah rawan demam berdarah dengue (Studi kasus di Kecamatan Pangandaran Kabupaten Ciamis Provinsi Jawa Barat) (in Indonesia). J. Vector-borne Dis. Stud. 2011; 3, 72-81.

Zulhaidir, A Setiawan, S Bakri and E Warganegara. Study on Macro-ecological Change: Impact of Land use Change against the Prevalency of Pulmonary Tuberculosis, Dengue Fever, and Malaria Deseases in Tanggamus Regency, Lampung Province, Indonesia. Available at: http://pasca.unila.ac.id/wp-content/uploads/2014/11/4, accessed January 2016.

NEA Murray, MB Quam and WA Smith. Epidemiology of dengue: Past, present and future prospects. Clin. Epidemiol. 2013; 5, 299-309.

CN Ainy. 2012, Pengaruh Ruang Terbuka Hijau terhadap Iklim Mikro di Kawasan Kota Bogor (in Indonesia). B. Sc. Thesis. Agriculture Institute of Bogor, Indonesia.

TW Kesetyaningsih and A Ulfabriana. Knowledge, behavior and socio-economic of community in dengue endemic areas with increased and remain trends in District Sleman, Yogyakarta, Indonesia. AIP Conf. Proc. 2016; 1744, 020059.

Downloads

Published

2018-01-28

How to Cite

KESETYANINGSIH, T. W., ANDARINI, S., SUDARTO, S., & PRAMOEDYO, H. (2018). The Minimum-Maximum Weather Temperature Difference Effect on Dengue Incidence in Sleman Regency of Yogyakarta, Indonesia. Walailak Journal of Science and Technology (WJST), 15(5), 387–396. https://doi.org/10.48048/wjst.2018.2277

Issue

Section

Research Article

Most read articles by the same author(s)