Nanocellulose-Reinforced “Green” Composite Materials

Authors

  • Nattakan SOYKEABKAEW Materials for Energy and Environment (MEE) Research Group, School of Science, Mae Fah Luang University, Chiang Rai 57000
  • Nattaya TAWICHAI Materials for Energy and Environment (MEE) Research Group, School of Science, Mae Fah Luang University, Chiang Rai 57000
  • Chuleeporn THANOMSILP Materials for Energy and Environment (MEE) Research Group, School of Science, Mae Fah Luang University, Chiang Rai 57000
  • Orawan SUWANTONG Materials for Energy and Environment (MEE) Research Group, School of Science, Mae Fah Luang University, Chiang Rai 57000

Keywords:

Nanocellulose, biodegradable polymer, bio-based material, green nanocomposite

Abstract

Today, the development of materials has to involve the consideration of environmental responsibility and sustainability. Therefore, more environmentally friendly products, which are biodegradable and derived from renewable resources, have been extensively established. However, in widespread applications, most bio-based polymers when used alone present limitations on their functions and are more costly when compared to their petroleum-based counterparts. One of the most effective ways to enhance the performance of bio-based materials is the incorporation of nanofillers or nanoreinforcements. Recently, cellulose nanofibers or nanocelluloses (NCs) have been paid a great deal of attention to, and incorporated within various biopolymer matrices, since NCs are renewable, biodegradable, carbon neutral, biocompatible, possess extraordinary reinforcing potential, etc. A significant improvement in key performances of the resulting NC-reinforced nanocomposites has been demonstrated, showing that they are comparable, or even better, than the more conventional materials and, thus, are a promising “green” alternative for various applications. Three types of NCs are classified in this review, including microfibrillated cellulose (MFC), cellulose nanowhisker (CNW), and bacterial cellulose (BC), and the NC-reinforced “green” composite systems are overviewed separately for each NC type. The details of their attempted processing techniques, improvements in the nanocomposite properties, dispersion problems in NCs, and remedies are discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

AN Nakagaito, A Fujimura, T Sakai, Y Hama and H Yano. Production of microfibrillated cellulose (MFC)-reinforced polylactic acid (PLA) nanocomposites from sheets obtained by a papermaking-like process. Compos. Sci. Tech. 2009; 69, 1293-7.

K Qiu and AN Netravali. Fabrication and characterization of biodegradable composites based on microfibrillated cellulose and polyvinyl alcohol. Compos. Sci. Tech. 2012; 72, 1588-94.

E Ten, J Turtle, D Bahr, L Jiang and M Wolcott. Thermal and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/cellulose nanowhiskers composites. Polymer 2010; 51, 2652-60.

MD Sanchez-Garcia, A Lopez-Rubio and JM Lagaron. Natural micro and nanobiocomposites with enhanced barriers properties and novel functionalities for food biopackaging applications. Trends Food Sci. Tech. 2010; 21, 528-36.

M Martínez-Sanz, MA Abdelwahab, A Lopez-Rubio, JM Lagaron, E Chiellini, TG Williams, DF Wood, WJ Orts and SH Imam. Incorporation of poly(glycidylmethacrylate) grafted bacterial cellulose nanowhiskers in poly(lactic acid) nanocomposites: Improved barrier and mechanical properties. Eur. Polym. J. 2013; 49, 2062-72.

A Sorrentino, G Gorrasi and V Vittoria. Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci. Tech. 2007; 18, 84-95.

MD Sanchez-Garcia and JM Lagaron. On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid. Cellulose 2010; 17, 987-1004.

SCM Fernandes, CSR Freier, AJD Silvestre, CP Neto, A Gandini, LA Berglund and L Salmén. Transparent chitosan films reinforced with a high content of nanofibrillated cellulose. Carbohyd. Polym. 2010; 81, 394-401.

S Gea, E Bilotti, CT Reynolds, N Soykeabkeaw and T Peijs. Bacterial cellulose-poly(vinyl alcohol) nanocomposites prepared by an in-situ process. Mater. Lett. 2010; 64, 901-4.

KY Lee, JJ Blaker and A Bismarck. Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved properties. Compos. Sci. Tech. 2009; 69, 2724-33.

N Lin, J Huang, PR Chang, J Feng and J Yu. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohyd. Polym. 2011; 83, 1834-42.

IMG Martins, SP Magina, L Oliveira, CSR Freire, AJD Silvestre, CP Neto and A Gandini. New biocomposites based on thermoplastic starch and bacterial cellulose. Compos. Sci. Tech. 2009; 69, 2169-8.

AK Mohanty, M Misra and LT Drzal. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. J. Polym. Environ. 2002; 10, 19-26.

K-Y Lee, Y Aitomaki, LA Berglund, K Oksman and A Bismarck. On the use of nanocellulose as reinforcement in polymer matrix composites. Compos. Sci. Tech. 2014; 105, 15-27.

P Tingaut, T Zimmermann and F Lopez-Suevos. Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 2010; 11, 454-64.

HS Barud, JL Souza, DB Santos, MS Crespi, CA Ribeiro, Y Messaddeq and SJL Ribeiro. Baterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohyd. Polym. 2011; 83, 1279-84.

AK Mohanty, M Misra and G Hinrichsen. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 2000; 276/277, 1-24.

ALS Pereira, DM Nascimento, MMS Filho, JPS Morais, NF Vasconcelos, JPA Feitosa, AIS Brígida and MF Rosa. Improvement of polyvinyl alcohol properties by adding nanocrystalline cellulose isolated from banana pseudostems. Carbohyd. Polym. 2014; 112, 165-72.

K Oksman, AP Mathew, D Bondeson and I Kvien. Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos. Sci. Tech. 2006; 66, 2776-84.

D Bondeson and K Oksman. Polylactic acid/cellulose whisker nanocomposites modified by polyvinlyl alcohol. Compos. Appl. Sci. Manuf. 2007; 38, 2486-92.

S Fujisawa, T Saito, S Kimura, T Iwata and A Isogai. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites. Compos. Sci. Tech. 2014; 90, 96-101.

JM Lagaron and A Lopez-Rubio. Nanotechnology for bioplastics: Opportunities, challenges and strategies. Trends Food Sci. Tech. 2011; 22, 611-7.

A Iwatake, M Nogi and H Yano. Cellulose nanofiber-reinforced polylactic acid. Compos. Sci. Tech. 2008; 68, 2103-6.

M Zenkiewicz and J Richert. Permeability of polylactide nanocomposite films for water vapour, oxygen and carbon dioxide. Polym. Test. 2008; 27, 835-40.

HMC Azeredo. Nanocomposites for food packaging applications. Food Res. Int. 2009; 42, 1240-53.

A Pei, Q Zhou and LA Berglund. Functionalized cellulose nanocrystals as biobased nucleation agents in poly(L-lactide) (PLLA) - Crystallization and mechanical property effects. Compos. Sci. Tech. 2010; 70, 815-21.

SJ Eichhorn, A Dufresne, M Aranguren, NE Marcovich, JR Capadona, SJ Rowan, C Weder, W Thielemans, M Roman, S Renneckar, W Gindl, S Veigel, J Keckes, H Yano, K Abe, M Nogi, AN Nakagaito, A Mangalam, J Simonsen, AS Benight, A Bismarck, LA Berglund and T Peijs. Review: Current international research into cellulose nanofibres and nanocomposites. J Mater. Sci. 2010; 45, 1-33.

K Okubo, T Fujii and ET Thostenson. Multi-scale hybrid biocomposite: Processing and mechanical characterization of bamboo fiber reinforced PLA with microfibrillated cellulose. Compos. Appl. Sci. Manuf. 2009; 40, 469-75.

N Lavoine, C Givord, N Tabary, I Desloges, B Martel and J Bras. Elaboration of a new antibacterial bio-nano-material for food-packaging by synergistic action of cyclodextrin and microfibrillated cellulose. Innovat. Food. Sci. Emerg. Tech. 2014; 26, 330-40.

AM Slavutsky and MA Bertuzzi. Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohyd. Polym. 2014; 110, 53-61.

E Fortunati, F Luzi, D Puglia, F Dominici, C Santulli, JM Kenny and L Torre. Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves. Eur. Polym. J. 2014; 56, 77-91.

V Favier, H Chanzy and JY Cavaillé. Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 1995; 28, 6365-7.

MF Rosa, ES Medeiros, JA Malmonge, KS Gregorski, DF Wood, LHC Mattoso, G Glenn, WJ Orts and SH Imam. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohyd. Polym. 2010; 81, 83-92.

S Kampangkaew, C Thongpin and O Santawtee. The synthesis of cellulose nanofibers from Sesbania Javanica for filler in thermoplastic starch. Energ. Proc. 2014; 56, 318-25.

JK Pandey, WS Chu, CS Kim, CS Lee and SH Ahn. Bio-nano reinforcement of environmentally degradable polymer matrix by cellulose whiskers from grass. Compos. Part B: Eng. 2009; 40, 676-80.

M Iguchi, S Yamanaka and A Budhiono. Review bacterial cellulose-a masterpiece of nature’s arts. J. Mater. Sci. 2000; 35, 261-70.

J Ambrosio-Martin, MJ Fabra, A Lopez-Rubio and JM Lagaron. Melt polycondensation to improve the dispersion of bacterial cellulose into polylactide via melt compounding: Enhanced barrier and mechanical properties. Cellulose 2015; 22, 1201-26.

J Lu, T Wang and LT Drzal. Preparation and properties of microfibrillated cellulose polyvinyl alcohol composite materials. Compos. Appl. Sci. Manuf. 2008; 39, 738-46.

NR Savadekar and ST Mhaske. Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohyd. Polym. 2012; 89, 146-51.

M Hietala, AP Mathew and K Oksman. Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur. Polym. J. 2013; 49, 950-6.

H Sehaqui, M Allais, Q Zhou and LA Berglund. Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Compos. Sci. Tech. 2011; 71, 382-7.

N Ninan, M Muthiah, IK Park, A Elain, S Thomas and Y Grohens. Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering. Carbohyd. Polym. 2013; 98, 877-85.

N Ninan, M Muthiah, IK Park, N Kalarikkal, A Elain, TW Wong, S Thomas and Y Grohens. Wound healing analysis of pectin/carboxymethyl cellulose/microfibrillated cellulose based composite scaffolds. Mater. Lett. 2014; 132, 34-7.

L Suryanegara, AN Nakagaito and H Yano. Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites. Cellulose 2010; 17, 771-8.

M Jonoobi, J Harun, AP Mathew and K Oksman. Mechanical properties of cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin screw extrusion. Compos. Sci. Tech. 2010; 70, 1742-7.

N Herrera, AP Mathew and K Oksman. Plasticized polylactic acid/cellulose nanocomposites prepared using melt-extrusion and liquid feeding: Mechanical, thermal and optical properties. Compos. Sci. Tech. 2015; 106, 149-55.

M Jonoobi, Y Aitomäki, AP Mathew and K Oksman. Thermoplastic polymer impregnation of cellulose nanofibre networks: Morphology, mechanical and optical properties. Compos. Appl. Sci. Manuf. 2014; 58, 30-5.

A Suryanegara, AN Nakagaito and H Yano. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites. Compos. Sci. Tech. 2009; 69, 1187-92.

L Petersson and K Oksman. Biopolymer based nanocomposites: Comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. Sci. Tech. 2006; 66, 2187-96.

L Petersson, I Kvien and K Oksman. Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos. Sci. Tech. 2007; 67, 2535-44.

MR Kamal and V Khoshkava. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites. Carbohyd. Polym. 2015; 123, 105-14.

M Martínez-Sanz, A Lopez-Rubio and JM Lagaron. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity. Carbohyd. Polym. 2013; 98, 1072-82.

E Fortunati, D Puglia, F Luzi, C Santulli, JM Kenny and L Torre. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: Part I. Carbohyd. Polym. 2013; 97, 825-36.

N Rescignano, E Fortunati, S Montesano, C Emiliani, JM Kenny, S Martino and I Armentano. PVA bio-nanocomposites: A new take-off using cellulose nanocrystals and PLGA nanoparticles. Carbohyd. Polym. 2014; 99, 47-58.

M Martínez-Sanz, RT Olsson, A Lopez-Rubio and JM Lagaron. Development of electrospun EVOH fibres reinforced with bacterial cellulose nanowhiskers: Part I, characterization and method optimization. Cellulose 2011; 18, 335-47.

Y Chen, C Liu, PR Chang, X Cao and DP Anderson. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: Effect of hydrolysis time. Carbohyd. Polym. 2009; 76, 607-15.

EM Teixeira, D Pasquini, AAS Curvelo, E Corradini, MN Belgacem and A Dufresne. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohyd. Polym. 2009; 78, 422-31.

Y Lu, L Weng and X Cao. Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohyd. Polym. 2006; 63, 198-204.

JS Alves, KC Reis, EGT Menezes, FV Pereira and J Pereira. Effect of cellulose nanocrystals and gelatin in corn starch plasticized films. Carbohyd. Polym. 2015; 115, 215-22.

K González, A Retegi, A González, A Eceiza and N Gabilondo. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohyd. Polym. 2015; 117, 83-90.

J George, R Kumar, VA Sajeevkumar, KV Ramana, R Rajamanickam, V Abhishek, S Nadanasabapathy and Siddaramaiah. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohyd. Polym. 2014; 105, 285-92.

H Ma, B Zhou, HS Li, YQ Li and SY Ou. Green composite films composed of nanocrystalline cellulose and cellulose matrix regenerated from functionalized ionic liquid solution. Carbohyd. Polym. 2011; 84, 383-9.

J Bras, ML Hassan, C Bruzesse, EA Hassan, NA El-Wakil and A Dufresne. Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crop. Prod. 2010; 32, 627-33.

PM Visakh, S Thomas, K Oksman and AP Mathew. Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated form bamboo waste: Processing and mechanical/thermal properties. Compos. Appl. Sci. Manuf. 2012; 43, 735-41.

TM Santos, MSMS Filho, CA Caceres, MF Rosa, JPS Morais, AMB Pinto and HMC Azeredo. Fish gelatin films as affected by cellulose whiskers and sonication. Food Hydrocoll. 2014; 41, 113-8.

G Mondragon, C Peña-Rodriguez, A González, A Eceiza and A Arbelaiz. Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J. 2015; 62, 1-9.

JP Reddy and JW Rhim. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohyd. Polym. 2014; 110, 480-8.

M Atef, M Rezaei and R Behrooz. Characterization of physical, mechanical, and antibacterial properties of agar-cellulose bionanocomposite films incorporated with savory essential oil. Food Hydrocoll. 2015; 45, 150-7.

WH Gao, KF Chen, RD Yang, F Yang and WJ Han. Properties of bacterial cellulose and its influence on the physical properties of paper. Bioresources 2011; 6, 144-53.

S Gea, FG Torres, OP Troncoso, CT Reynolds, F Vilasecca, M Iguchi and T Peijs. Biocomposites based on bacterial cellulose and apple and radish pulp. Int. Polym. Proc. XXII 2007; 5, 497-501.

B Surma-Ślusarska, D Danielewicz and S Presler. Properties of composites of unbeaten birch and pine sulphate pulps with bacterial cellulose. Fibre Text East Eur. 2008; 16, 127-9.

Indriyati, R Yudianti and M Karina. Development of nanocomposites from bacterial cellulose and poly(vinyl alcohol) using casting-drying method. Proc. Chem. 2012; 4, 73-9.

A Stoica-Guzun, M Stroescu, I Jipa, L Dobre and T Zaharescu. Effect of ɤ irradiation on poly(vinyl alcohol) and bacterial cellulose composites used as packaging materials. Radiat. Phys. Chem. 2013; 84, 200-4.

CJ Grande, FG Torres, CM Gomez, OP Troncoso, J Canet-Ferrer and J Martínez-Pastor. Development of self-assembled bacterial cellulose-starch nanocomposites. Mater. Sci. Eng. C 2009; 9, 1098-104.

N Soykeabkaew, N Laosat, A Ngaokla, N Yodsuwan and T Tunkasiri. Reinforcing potential of micro- and nano-sized fibers in the starch-based biocomposites. Compos. Sci. Tech. 2012; 72, 845-52.

F Quero, M Nogi, H Yano, K Abdulsalami, SM Holmes, BH Sakakini and SJ Eichhorn. Optimization of the mechanical performance of bacterial cellulose/poly(L-lactic) acid composites. ACS Appl. Mater. Int. 2009; 2, 321-30.

Y Kim, R Jung, HS Kim and HJ Jin. Transparent nanocomposites prepared by incorporation microbial nanofibrils into poly(L-lactic acid). Curr. Appl. Phys. 2009; 9, S69-S71.

KY Lee, P Bharadia, JJ Blaker and A Bismarck. Short sisal fibre reinforced bacterial cellulose polylactide nanocomposites using hairy sisal fibres as reinforcement. Compos. Appl. Sci. Manuf. 2012; 43, 2065-74.

DR Ruka, GP Simon and KM Dean. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohyd. Polym. 2013; 92, 1717-23.

S Gea, CT Reynolds, N Roohpur, N Soykeabkaew, B Wirjosentono, E Bilotti and T Peijs. Biodegradable composites based on poly(ɛ-caprolactone) and bacterial cellulose as a reinforcing agent. J. Biobased Mater. Bioenerg. 2010; 4, 384-90.

N Soykeabkaew, C Sian, S Gea, T Nishino and T Peijs. All-cellulose nanocomposites by surface selective dissolution of bacterial cellulose. Cellulose 2009; 16, 435-44.

RD Pavaloiu, A Stoica-Guzun, M Stroescu, SI Jinga and T Dobre. Composite films of poly(vinyl alcohol)-chitosan-bacterial cellulose for drug controlled release. Int. J. Biol. Macromol. 2014; 68, 117-24.

CF Souza, N Lucyszyn, MA Woehl, IC Riegel-Vidotti, R Borsali and MR Sierakowski. Carbohyd. Polym. 2013; 93, 144-53.

OA Saibuatong and M Phisalaphong. Novo aloe vera-baterial cellulose composite film from biosynthesis. Carbohyd. Polym. 2010; 79, 455-60.

Y Li, S Qing, J Zhou and G Yang. Evaluation of bacterial cellulose/hyaluronan nanocomposite biomaterials. Carbohyd. Polym. 2014; 103, 496-501.

P Qu, Y Gao, GF Wu and LP Zhang. Nanocomposites of poly(lactic acid) reinforced with cellulose nanofibrils. Bioresources 2010; 5, 1811-23.

KY Lee, M Tang, CK Williams and A Bismarck. Carbohydrate derived copoly(lactide) as the compatibilizer for bacterial cellulose reinforced polylactide nanocomposites. Compos. Sci. Tech. 2012; 72, 2546-50.

E Espino-Pérez, J Bras, V Ducruet, A Guinault, A Dufresne and S Domenek. Influence of chemical surface modification of cellulose nanowhiskers on thermal, mechanical, and barrier properties of poly(lactide) based bionanocomposites. Eur. Polym. J. 2013; 49, 3144-54.

Z Song, H Xiao and Y Zhao. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper. Carbohyd. Polym. 2014; 111, 442-8.

S Gårdebjer, A Bergstrand and A Larsson. A mechanistic approach to explain the relation between increased dispersion of surface modified cellulose nanocrystals and final porosity in biodegradable films. Eur. Polym. J. 2014; 57, 160-8.

C Tan, J Peng, W Lin, Y Xing, K Xu, J Wu and M Chen. Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocomposites. Eur. Polym. J. 2015; 62, 186-97.

A Abdulkhani, J Hosseinzadeh, A Ashori, S Dadashi and Z Takzare. Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polym. Test. 2014; 35, 73-9.

T Mukherjee, M Sani, N Kao, RK Gupta, N Quazi and S Bhattacharya. Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem. Eng. Sci. 2013; 101, 655-62.

P Purnama and SH Kim. Bio-based composite of stereocomplex polylactide and cellulose nanowhiskers. Polym. Degrad. Stabil. 2014; 109, 430-5.

AN Frone, S Berlioz, JF Chailan and DM Panaitescu. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohyd. Polym. 2013; 91, 377-84.

JM Raquez, Y Murena, AL Goffin, Y Habibi, B Ruelle, F Debuyl and P Dubois. Surface-modification of cellulose nanowhiskers and their use as nanoreinforcers into polylactide: A sustainably-integrated approach. Compos. Sci. Tech. 2012; 72, 544-9.

JP Mesquita, CL Donnici, IF Teixeira and FV Pereira. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohyd. Polym. 2012; 90, 210-7.

E Fortunati, M Peltzer, I Armentano, L Torre, A Jiménez and JM Kenny. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohyd. Polym. 2012; 90, 948-56.

E Fortunati, S Rinaldi, M Peltzer, N Bloise, L Visai, I Armentano, A Jiménez, L Latterini and JM Kenny. Nano-biocomposite films with modified cellulose nanocrystals and synthesized silver nanoparticles. Carbohyd. Polym. 2014; 101, 1122-33.

E Fortunati, F Luzi, D Puglia, R Petrucci, JM Kenny and L Torre. Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: Innovative reuse of coastal plant. Ind. Crops Prod. 2015; 67, 439-47.

MP Arrieta, E Fortunati, F Dominici, E Rayón, J López and JM Kenny. Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties. Carbohyd. Polym. 2014; 107, 16-24.

MP Arrieta, E Fortunati, F Dominici, E Rayón, J López and JM Kenny. PLA-PHB/cellulose based films: Mechanical, barrier and disintegration properties. Polym. Degrad. Stabil. 2014; 107, 139-49.

MP Arrieta, E Fortunati, F Dominici, J López and JM Kenny. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends. Carbohyd. Polym. 2015; 121, 265-75.

Downloads

Published

2016-04-04

How to Cite

SOYKEABKAEW, N., TAWICHAI, N., THANOMSILP, C., & SUWANTONG, O. (2016). Nanocellulose-Reinforced “Green” Composite Materials. Walailak Journal of Science and Technology (WJST), 14(5), 353–368. Retrieved from https://wjst.wu.ac.th/index.php/wjst/article/view/2104