Genetic Variation of Cassava Mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), Based on DNA Sequences from Mitochondrial and Nuclear Genes

Authors

  • Atsalek RATTANAWANNEE Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900
  • Wiboon CHONGRATTANAMETEEKUL Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900

Keywords:

Genetic variation, cassava mealybug, Phenacoccus manihoti, DNA sequence

Abstract

The present study aimed to investigate the genetic variation and genetic structure of the Phenacoccus manihoti Matile-Ferrero, one of the most serious insect pests of cassava worldwide, in populations in Thailand, using mitochondrial and nuclear DNA sequence based analysis. The samples of P. manihoti were collected from 28 major cassava-growing areas within 18 provinces in Thailand. Our field survey results showed that the northeastern and eastern regions of Thailand were widely and highly infested with P. manihoti. Phylogenetic analysis revealed 2 mitochondrial clades and a single nuclear clade, which corresponded to low genetic variability. This suggests that P. manihoti has a high potential to spread aggressively throughout the cassava-growing areas in Thailand that in which it was first found in 2008. In addition, the generally low genetic divergence observed may be due to the highly prevalent parthenogenetic reproduction of this insect pest species. Further research is therefore necessary to develop proportional prevention and surveillance programs for early detection and rapid response. In addition, the genetic structure and variability of P. manihoti populations from neighboring countries should be studied.

doi:10.14456/WJST.2016.13

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

Atsalek RATTANAWANNEE, Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok 10900

Department of Entomology

References

AC Bellotti, L Smith and SL Lapointe. Recent advances in cassava pest management. Annu. Rev. Entomol. 1999; 44, 343-70.

S Parsa, T Kondo and A Winotai. The cassava mealybug (Phenacoccus manihoti) in Asia: First records, potential distribution, and an identification key. PLoS One 2012; 7, e47675.

RJ Hillocks, JM Thresh and AC Bellotti. Cassava Biology, Production and Utilization. CABI Pub, Oxon, 2002, p. 209-36.

B Löhr, AM Varela and B Santos. Exploration for natural enemies of the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae), in South America for the biological control of this introduced pest in Africa. Bull. Entomol. Res. 1990; 80, 417-25.

P Neuenschwander. Biological control of the cassava mealybug in Africa: A review. Biol. Control 2001; 21, 214-29.

B Vaenkeo. Summary of cassava outbreak in Thailand, Available at: http://home.kku.ac.th/nbcrc/nbcrckku/cassava/bunyag.files/frame.htm, accessed September 2011.

P Soysouvanh and N Siri. Population abundance of pink mealybug, Phenacoccus manihoti on four cassava varieties. Khon Kaen Agri. J. 2013; 41, 149-53.

R Muniappan, BM Shepard, GW Watson, GR Carner, A Rauf, D Sartiami, P Hidayat, JVK Afun, G Goergen and AKM Ziaur Rahman. New records of invasive insects (Hemiptera: Sternorrhyncha) in Southeast Asia and West Africa. J. Agri. Urban. Entomol. 2009; 26, 167-74.

CABI-Plantwise. Cassava mealybug (Phenacoccus manihoti) factsheet. Available: http://www.plantwise.org/?dsid=40173&loadmodule=plantwisedatasheet&page=4270&site=234, accessed May 2012.

PA Calatayud and BP Le Rü. Cassava-Mealybug Interactions. Actiques, Paris, 2006, p. 11-78.

KM Lema and HR Herren. The influence of constant temperature on population growth rates of the cassava mealybug, Phenacoccus manihoti. Entomol. Exp. Appl. 1985; 38, 165-9.

JC Avise. Molecular Markers, Natural History and Evolution. 2nd ed. Sinauer Associates, Sunderland, 2004, p. 1-541.

DA Downie and PJ Gullan. Phylogenetic analysis of mealybugs (Hemiptera: Coccoidea: Pseudococcidae) based on DNA sequences from three nuclear genes, and a review of the higher classification. Syst. Entomol. 2004; 29, 238-59.

NM Rosas-García, SL Sarmiento-Benavides, JM Villegas-Mendoza, S Hernández-Delgado and N Mayek-Pérez. Genetic differentiation among Maconellicoccus hirsutus (Hemiptera: Pseudococcidae) populations living on different host plants. Environ. Entomol. 2010; 39, 1043-50.

S Behura. Molecular marker systems in insects: Current trends and future avenues. Mol. Ecol. 2006; 15, 3087-113.

JT Margaritopoulos, N Bacandritsos and AN Pekas. Genetic variation of Marchalina hellenica (Hemiptera: Margarodidae) sampled from different hosts and localities in Greece. Bull. Entomol. Res. 2003; 93, 447-53.

M Bouga, V Evangelou, D Lykoudis, I Cakmak and F Hatjina. Genetic structure of Marchalina hellenica (Hemiptera: Margarodidae) populations from Turkey: preliminary mtDNA sequencing data. Biochem. Genet. 2011; 49, 683-94.

AJ Baker. Molecular Ecology. In: A Baker (ed.). Molecular Methods in Ecology, Blackwell Science Ltd., Oxford, 2000, p. 1-6.

M Nei and S Kumar. Molecular Evolution and Phylogenetics. Oxford University Press, New York, 2000, p. 3-16.

E Randi. Mitochondrial DNA. In: A Baker (ed.). Molecular Methods in Ecology, Blackwell Science Ltd., Oxford, 2000, p. 136-67.

JK Brown and AM Idris. Genetic differentiation of whitefly Bemisia tabaci mitochondrial cytochrome oxidase I, and phylogeographic concordance with the coat protein of the plant virus genus Bemomovirus. Ann. Entomol. Soc. Am. 2005; 98, 827-37.

CH Hsieh, CH Wang and CC Ko. Analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) species complex and distribution in eastern Asia based on mitochondrial DNA markers. Ann. Entomol. Soc. Am. 2006; 99, 768-75.

GE Valle, AL Lourenção, MI Zucchi, JB Pinheiro and AG Abreu. MtDNA variability in whitefly (Bemisia tabaci) populations in Brazil. Genet. Mol. Res. 2011; 10, 2155-64.

XJ Guo, Q Rao, F Zhang, C Luo, HY Zhang and XW Gao. Diversity and genetic differentiation of the whitefly Bemisia tabaci species complex in China based on mtCOI and cDNA-AFLP analysis. J. Integr. Agri. 2012; 11, 206-14.

RG Harrison. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Tree 1989; 4, 6-11.

PDN Hebert, A Cywinska, SL Ball and JR de Waard. Biological identifications through DNA barcodes. Proc. R. Soc. B 2003; 270, 313-22.

Y Liu, R Liu, L Ye, J Liang, F Xuan and Q Xu. Genetic differentiation between populations of swimming crab Portunus trituberculatus along the coastal waters of East China Sea. Hydrobiologia 2009; 618, 125-37.

JWO Ballard and DM Rand. The population biology of mitochondrial DNA and its phylogenetic implications. Annu. Rev. Ecol. Evol. Syst. 2005; 36, 621-42.

JWO Ballard and MC Whitlock. The incomplete natural history of mitochondria. Mol. Ecol. 2004; 13, 729-44.

N Galtier, B Nabholz, S Glémin and GDD Hurst. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol. Ecol. 2009; 18, 4541-50.

Z Gompert, WL Forister, JA Fordyce and CC Nice. Widespread mito-nuclear discordance with evidence for introgressive hybridization and selective sweeps in Lycaeides. Mol. Eol. 2008; 17, 5231-44.

MR Kronforst, LG Young, LM Blume and LE Gilbert. Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies. Evolution 2006; 60, 1254-68.

J Mallet. Hybridization as an invasion of the genome. Trends Ecol. Evol. 2005; 20, 229-37.

GDD Hurst and FM Jiggins. Problems with mitochondrial DNA as a marker in population, phylogeographic and phylogenetic studies: The effects of inheritedsymbionts. Proc. R. Soc. B 2005; 252, 1525-34.

R Zink and G Barrowclough. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 2008; 17, 2107-21.

JC Daly. Ecology and genetics of insecticide resistance in Helicoverpa armigera: interactions between selection and gene flow. Genetica 1993; 90, 217-26.

N Kazachkova, J Meijer and B Ekbom. Genetic diversity in pollen beetles (Meligethes aeneus) in Sweden: role of spatial, temporal and insecticide resistance factors. Agri. Forest Entomol. 2007; 9, 259-69.

T Lenormand. Gene flow and the limits to natural selection. Trends Ecol. Evol. 2002; 17, 183-9.

T Malausa, A Fenis, S Warot, JF Germain, N Ris, E Prado, M Botton, F Vanlerberghe-Masutti, R Sforza, C Cruaud, A Couloux and P Kreiter. DNA markers to disentangle complexes of cryptic taxa in mealybugs (Hemiptera: Pseudococcidae). J. Appl. Entomol. 2011; 135, 142-55.

K Tamura, G Stecher, D Peterson, A Filipski, and S Kumar. MEGA6: Molecular evolution genetics analysis version 6.0. Mol. Biol. Evol. 2013; 30, 2725-9.

P Librado and J Rozas. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009; 25, 1451-2.

AS Tanabe. Kakusan: A computer program to automate the selection of a nucleotide substitution model and the configuration of a mixed model on multilocus data. Mol. Ecol. Notes 2007; 7, 962-4.

G Jobb, A von Haeseler and K Strimmer. Treefinder: A powerful graphical analysis environment for molecular phylogenetics. BMC Evol. Biol. 2004; 4, 18.

H Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Control. 1974; 19, 716-23.

GE Schwarz. Estimating the dimension of a model. Ann. Stat. 1978; 6, 461-4.

JP Huelsenbeck and F Ronquist. MrBayes: Bayesian inference of phylogeny. Bioinformatics 2001; 17, 754-5.

B Larget and DL Simon. Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol. Biol. Evol. 1999; 16, 750-9.

F Schulthess, JU Baumgärtner and HR Herren. Factors influencing the life table statistics of the cassava mealybug Phenacoccus manihoti. Int. J. Trop. Insect. Sci. 1987; 8, 851-6.

BP Le Rü and Y Iziquel. Experimental-study on mechanical effect of rainfall using a rain simulator on cassava mealybug populations, Phenacoccus manihoti. Acta Oecol. 1990; 11, 741-54.

PA Calatayud, M Tertuliano and BL Ru. Seasonal changes in secondary compounds in the phloem sap of cassava in relation to plant genotype and infestation by Phenacoccus manihoti (Homoptera: Pseudococcidae). Bull. Entomol. Res. 1994; 84, 453-60.

S Singh, R Sharma, R Kumar, VK Gupta and VK Dilawari. Molecular typing of mealybug Phanacoccus solenopsis populations from different hosts and locations in Punjab, India. J. Environ. Biol. 2012; 33, 539-43.

Downloads

Published

2015-01-12

How to Cite

RATTANAWANNEE, A., & CHONGRATTANAMETEEKUL, W. (2015). Genetic Variation of Cassava Mealybug, Phenacoccus manihoti (Hemiptera: Pseudococcidae), Based on DNA Sequences from Mitochondrial and Nuclear Genes. Walailak Journal of Science and Technology (WJST), 13(2), 123–132. Retrieved from https://wjst.wu.ac.th/index.php/wjst/article/view/1432