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Abstract 

This paper theoretically investigates the radiation effect on magnetohydrodynamics (MHD) 
stagnation-point flow of a nanofluid over an exponentially stretching sheet under the assumptions of a 
small magnetic Reynolds number. The sheet is stretched with an exponential velocity in the presence of a 
non-uniform magnetic field B applied in a transverse direction normal to the flow. By using the modified 
Bernoulli's equation, a highly nonlinear nanofluid problem is modeled for an electrically conducting 
nanofluid. The momentum, thermal and concentration boundary layer thicknesses are intensified for the 
incorporated flow parameters such as Brownian motion parameter Nb, thermophoresis parameter Nt, 
Prandtl number Pr, Lewis number Le, Hartmann number Mexp and velocity ratio parameter ε. Also by an 
appropriate similarity transformation, the system of nonlinear partial differential equations is reduced to 
ordinary differential equations. These equations subjected to the boundary conditions are solved 
numerically using the Keller-box method. Numerical results are plotted and discussed for pertinent flow 
parameters. A comparison with existing results in the literature is also provided. 

Keywords: MHD, radiation effect, stagnation-point flow, numerical solution. 
 
 
Introduction 

During the last few decades, stagnation-point flow has engaged the attention of many researchers 
due to its growing applications in industry such as cooling of electronic devices by fans, cooling of 
nuclear reactors during emergency shutdown and hydrodynamic processes. In fluid mechanics, a point 
where the local velocity of the fluid becomes zero is called a stagnation-point. This point marks a location 
in the flow where the approaching flow divides to pass on both sides along the surface. The stagnation-
point exists everywhere in the sense that certainly appears as a component of more complicated flow 
fields. For example, in some situations, flow is stagnated by a solid wall while in others; there is a line 
interior to a homogeneous fluid domain or the interface between 2 immiscible fluids [1-3]. The 
stagnation-point flow towards a stretching or shrinking sheet has drawn considerable attention of several 
researchers and a good amount of literature has been generated on this topic [4-12]. 

In all the above investigations the stagnation-point flow is studied for traditional viscous fluids. 
However, during the last few decades, the developments in the field of nanotechnology based on a special 
class of fluids called nanofluids have become an extensive area of research due to its growing 
applications in many engineering and technological processes. Hence, this is the motivation behind the 
choice of the present study. More exactly, the current article deals with the stagnation-point flow of a 
nanofluid over an exponentially stretching sheet. Although, the presence of additional nonlinear terms in 
the equations of motion make it more complex and subtle as compared to other fluid models [13-15]. 
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However, researchers are getting interested in studying the boundary layer flow of nanofluids with 
different physical aspects. 

The conjugate effects of heat and mass transfer [16,17] on magnetic nanoparticles experience a 
force induced by an electric current which results for the modification in fluid motions. This electrically 
conducting nanofluid interacts with a transverse magnetic field which induces Lorentz forces. More 
importantly, the study of the magnetohydrodynamics (MHD) stagnation-point flow of nanofluid over a 
continuously stretching surface has attracted considerable attention due to its numerous applications in 
industrial manufacturing processes. This effect is used for the cooling purposes in nuclear reactors where 
liquid sodium is used for the induction flow meter which depends on the potential differences in the flow 
[18]. On the other hand, the radiation effect is quite significant in many engineering processes at high 
temperature and is also important for the design of pertinent equipment [19,20]. As electrically 
conducting fluid has important applications in nuclear reactors cooling systems, biomedicine, electronics, 
glass fiber, hot rolling, food and transportation [21], the present study aims for the radiation effect on 
MHD stagnation-point flow of a nanofluid over an exponentially stretching sheet. 
 
Problem formulation 

Consider a steady two-dimensional boundary layer stagnation-point flow of a nanofluid over an 
exponentially stretching sheet. The stretching and free stream velocities are assumed to be of the forms 

  )/( lx
w aexu   and   )/( lxbexu   respectively, where a and b are constants, x is the coordinate 

measured along the stretching surface and l is the length of the sheet. A non-uniform transverse magnetic 
field of strength B(x) = B0 e

(x/2l) is imposed parallel to the y axis (normal to the flow direction), where 

B0 is the uniform magnetic field strength. It is assumed that the induced magnetic field due to the motion 
of an electrically conducting fluid is negligible. Further, it is also assumed that the external electrical field 
is zero and the electric field due to the polarization of charges is negligible [22]. Figure 1 shows that the 
temperature T  and the nanoparticles fraction C take forms )(xTw  and )(xCw , respectively, whereas the 

ambient values of temperature T  and the nanoparticles fraction C  are attained as y  tends to infinity. 

 
 

 
 

Figure 1 Physical model and coordinate system. 
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The governing boundary layer equations based on the balance laws of momentum, energy and 
concentration in nanofluid problems are as follows; 
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Here u and v are the velocity components in the x and y-directions respectively,  is the viscosity, f  

is the density of the base fluid,   is the electrical conductivity,  xB  is the magnetic field, 
  fc

k


   

where k is the thermal conductivity and   fc  is the heat capacitance of the base fluid, 
 
  f

p

c

c




   

where  pc is the heat capacitance of the nanoparticles, BD  is the Brownian diffusion coefficient, TD  

is the thermophoresis diffusion coefficient and rq  is the radiation flux. The Rosseland approximation is 

defined as [23,24]; 
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where 
  is the Stefan-Boltzmann constant and 

k  is the mean absorption coefficient. It is assumed that 

the temperature difference between the free stream T  and local temperature T  is small enough, 

expanding 4T  in a Taylor series about T  and neglecting higher order terms results for; 
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After substituting Eqs. (5) and (6), Eq. (3) reduces to; 
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The subjected boundary conditions are; 
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The prescribed temperature and the concentration on the surface of the sheet are assumed of the 

forms    lx
w eTTxT 2/

0   and    lx
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0  , where 00, CT  are the reference temperature and 

concentration respectively. Now, the nonlinear partial differential equations are reduced into nonlinear 
ordinary differential equations. For that purpose, a stream function  yx,   is defined as; 
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where, the continuity Eq. (1) is satisfied identically. The similarity transformation is defined as [20]; 
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On substituting Eq. (10), Eqs. (2), (4) and (7) reduce to the following system of nonlinear ordinary 
differential equations. 
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Here, prime denote the differentiation with respect to η,   is the velocity ratio parameter,   is the 
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kinematic viscosity of the fluid, Pr is the Prandtl number, Le  is the Lewis number, 
expM  is the Hartmann 

number, )
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the Brownian motion parameter and Nt  is the thermophoresis parameter. The corresponding boundary 
conditions (8) are transformed into; 
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The parameters of practical interest in the formulated problem are velocity, heat and mass transfer 

respectively, which are presented in terms of skin-friction 
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where,   /Re xxuwx   is the local Reynolds number based on the stretching velocity. The transformed 

nonlinear ordinary differential Eqs. (11) - (13) subjected to the boundary conditions (15) are solved 
numerically by using the Keller-box method [25]. 
 
Numerical procedure for Keller-box method 

In the following section, the numerical procedure of the Keller-box method for the radiation effect 
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method is very simple and highly accurate in computing results for the boundary layer flow problems. 
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The boundary conditions in terms of new dependent variable η, become; 
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Figure 2 Net rectangle for difference approximations. 
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At x = xi, the subjected boundary conditions (18) in terms of the dependent variable (η) become; 
 

.0,0,
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
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J
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J
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qgu
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
                                                                                                      (26) 

 
Newton’s method 

If ( ,1i
jf ,1i

ju ,1i
jv ,1i

jg ,1i
jp ,1i

jq 1i
js ) are assumed to be known for ,0 Jj   then the 

solution of the unknown ( ,i
jf ,i

ju ,i
jv ,i

jg ,i
jp ,i

jq i
js ) ,0 Jj  have to be obtained. For simplicity of 

notations, unknown at x = xi, ( ,i
jf ,i

ju ,i
jv ,i

jg  ,i
jp ,i

jq i
js ) are written as (fj, uj, vj, gj, pj, qj, sj). After 

multiplying with jh , the system of Eqs. (25) can be written as; 
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          (27) 

 

For the Newton’s method, the following iterates are introduced to linearize the nonlinear system of 
Eqs. (27); 
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                                          (28) 

 

Substituting these expressions (28) into Eqs. (27), and after dropping the quadratic and higher-order 

terms in  k
jf ,  k

ju ,  ,k
jv  ,k

jg  ,k
jp  k

jq and  k
js  as well as the superscript i for 

simplicity, this procedure yields the following linear tridiagonal system; 
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To complete the system (22), the boundary conditions (19) are recalled that can be satisfied exactly 

with no iteration [25]. So, the correct values in all the iterations are maintained by taking; 
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                                                          (30) 

 
 
 

The Block-elimination method 
The linearized differential equations of the system (29) have a block-tridiagonal structure. In vector-

matrix form, it can be written as; 
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The block-tridiagonal structure commonly consists of variables or constants, but here, an interesting 
feature can be observed that is, for the Keller’s Box method, it consists of block matrices. By taking

2
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h
e  , the elements of matrices are defined as follows; 
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The coefficient matrix A is known as a tridiagonal matrix due to the fact that all elements of  A  are 

zero except those 3 along the diagonal. To solve Eq. (31),  A  is assumed to be nonsingular and can be 

factorized into; 
 

    ULA  ,                                                                                                               (39) 

 
where 
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

 ,                                           (40)

 

 
where  I  is the identity matrix of order 7 and    ii ,  are 7×7 matrices whose elements are determined 

by the following equations; 
 

   11 A ,                                                                                                  (41) 

 

    111 CA  ,                                                                                                                            (42) 

 
and 
 
[αj] = [Aj]-[Bj] [Γj-1],              j = 2, 3,……., J,                                                                            (43) 
 
[αj] [Γj]= [Cj],                        j = 2, 3,……., J.                                                                          (44) 
 
Eq. (39) can be substituted into Eq. (31), which is; 
 

     .rUL                                                                                                                            (45) 

if  
 

    WU  ,                                                                                                                 (46) 

 
then Eq. (45) becomes; 
 
    rWL  ,                                                                                                                       (47) 

 
where 
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









J

J

W

W

W

W

W

1

2

1


,                                                                                                                         (48) 

 
here [Wj] are 7×1 column matrices. The elements  W  can be solved from Eq. (47); 

 

    111 rW  ,                                                                                                  (49) 

 
[αj] [Wj] = [rj]-[Bj] [Wj-1],           2 ≤ j ≤ J.                                                                                  (50) 
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The step in which [Γj], [αj] and [Wj] are calculated is usually referred to as the forward sweep. Once 
the elements of  W  are found, Eq. (47) then gives the solution    in the so-called backward sweep, in 

which the elements are obtained by the following relations; 
 

   JJ W ,                                                                                     (51) 

 
[δj] = [Wj] - [Γj] [δj+1],     2 ≤ j ≤ J.                                                                                           (52) 
 
Once the elements of    are found, Eqs. (29) can be used to find the (k+1)th iteration in Eq. (27). 

 
Starting conditions 
Keller-box method is unique in which various spacing along x and y directions can be used. For the 

numerical computation, a proper step size and appropriate value of the boundary layer thickness must be 
determined. In general, computation can be started by using a small value of η∞ and then successively 
increase it until a suitable value is obtained. In some cases, too small or too large values of η∞ may give 
rise to the convergence problem. For most laminar boundary layer flows, the transformed boundary layer 
thickness (η) is almost constant [25] and typically lies between 5 and 10. In order to start and proceed 
with the numerical computation, it is necessary to make initial guesses for the functions f, u, v, g, p, q, and 
s across the boundary layer from η = 0 to η → ∞. There are few checks on the selections of distribution 
curves that they must satisfy the boundary conditions (15). Different guesses of the initial value profiles 
will give the same final result but the iteration counts and the computation time may be more or less. For 
the present problem, the following initial value profiles have been taken; 
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sqpg

vfuff
                (53) 

 
In the laminar flow calculations, the wall shear stress parameter v(η) is commonly used as the 

convergence criterion where iterations are repeated until the convergence is satisfied. Therefore, 
calculations are stopped when; 
 

 
10  iv ,                                                                                                                                    (54) 

 
where 1  is a small prescribed value  00001.01   which shows the accuracy of most predicted 

quantities up to 4 decimal places [25]. 
 
Results and discussion 

The coupled nonlinear ordinary differential Eqs. (11) - (13) subjected to the boundary conditions 
(15) are solved numerically by using the finite difference scheme known as the Keller-box method. The 
numerical results for physical parameters of interest such as Brownian motion parameter Nb, 
thermophoresis parameter Nt, velocity ratio parameter  , radiation parameter N, Prandtl number Pr, 
Lewis number Le and Hartmann number Mexp are given in Tabular form (Tables 1 and 2) and displayed 
graphically (Figures 3 - 13). Table 1 shows a comparison of obtained results for the reduced Nusselt 
number )0(   with the results given by [19,20]. These comparisons show an excellent agreement 

between the obtained numerical results and existing results in the literature. 
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Table 1 Comparison of the reduced Nusselt number )0(   when Nb = Nt = Le = ε = 0. 

 

Pr Mexp N 
[19] [20] Present results 

)0(  )0(  )0(  

1 0 0 0.9548 0.9548 0.9548 

2 0 0 1.4714 1.4714 1.4714 

3 0 0 1.8691 1.8691 1.8691 

1 0 1.0 0.5315 0.5312 0.5312 

1 1.0 0 - 0.8611 0.8611 

1 1.0 1.0 - 0.4505 0.4505 
 
 

Table 2 shows the variations of the reduced Nusselt number )0(  , the reduced Sherwood 

number )0(  and the skin-friction coefficient  0fxC  for different values of Nb, Nt, Pr, Le, Mexp, N 

and ε. It is observed form this table that )0(   decreases with the increasing values of Nb, Nt, Le and N 

whereas it increases for increasing values of Pr and ε. These decreasing effects in )0(   with respect to 

Nb and Nt play an important role for the deeper penetration into the fluid which acts as a good thickener 
for the thermal boundary layer. It is due to the fact that the presence of the nanoparticles in the base fluid 
increases the effective thermal conductivity of the fluid significantly and as a result enhances the heat 
transfer characteristics of the nanofluid. However, it is found that )0(  decreases for the increasing 

values of Nt and Pr whereas it increases for increasing values of Nb, Le, ε and N. Further, it is observed 
that  0fxC  decreases for increasing values of ε. Here, it is noted that for the increasing values of Mexp, 

)0(  , )0(  and  0fxC  show a quite opposite effect in both cases of ε < 1 and ε > 1. The values of 

 0fxC  are found to be positive when ε < 1, which means that nanofluids exert a drag force on the solid 

boundary while negative values of  0fxC  show an opposite effect when ε > 1. 
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Table 2 Values of the reduced Nusselt number )0( , the reduced Sherwood number )0(  and the 

skin-friction coefficient  0fxC . 

 

Nb Nt Pr Le Mexp ε N )0(  )0(   0fxC  

0.1 0.1 1.00 10 0.1 0.1 1.0 0.5382 3.5382 1.2856 

0.5 0.1 1.00 10 0.1 0.1 1.0 0.4710 3.6457 1.2856 

0.1 0.5 1.00 10 0.1 0.1 1.0 0.5094 3.0958 1.2856 

0.1 0.1 10.0 10 0.1 0.1 1.0 1.6472 3.1073 1.2856 

0.1 0.1 1.00 25 0.1 0.1 1.0 0.5363 5.8844 1.2856 

0.1 0.1 1.00 10 2.5 0.1 1.0 0.4690 3.3924 1.8977 

0.1 0.1 1.00 10 2.5 1.1 1.0 0.8078 3.8964 -0.2702 

0.1 0.1 1.00 10 0.1 0.9 1.0 0.7581 3.8017 0.2083 

0.1 0.1 1.00 10 0.1 1.1 1.0 0.8028 3.8880 -0.2216 

0.1 0.1 1.00 10 0.1 2.0 1.0 0.9796 4.2732 -2.7348 

0.1 0.1 1.00 10 0.1 0.1 3.0 0.3361 3.5984 1.2856 

 
 

Figure 3 shows the effects of Mexp and ε on the velocity profiles  f   for fixed values of Nb, Nt, 

Pr, Le and N when ε < 1, ε = 1 and ε > 1. This figure shows that  f   decreases for increasing values of 

Mexp for the case of ε < 1. Here, the decreasing behavior in  f   is justified due to the fact that larger 

values of Mexp increase the resistive forces on the stretching surface which result in a retardation force to 
slow down the nanofluid motions. However, in the case of ε > 1,  f   increases for the increasing values 

of Mexp. It is further observed that  f   increases for increasing values of ε. It is interesting to note that 

in the case of ε > 1, the momentum boundary layer thickness becomes smaller compared to the case of ε < 
1 and causes an inverted boundary layer structure. Moreover, when ε = 1,  f   coincide with each other 

and results in a degenerate inviscid flow, where the stretching matches the conditions at infinity. This 
means that in the case when the external stream velocity becomes equal to the stretching velocity, the 
flow field is not influenced by the different values of the incorporated flow parameters. 
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Figure 3 Velocity profiles against   for different values of Mexp. 

 
 

Temperature profiles    for both cases of ε < 1 and ε > 1 are shown in Figures 4 - 8, respectively. 

It is observed from Figures 4 - 7 that    increases for the increasing values of Nb, Nt and N whereas it 

decreases for increasing values of Pr. This decrease in    with an increase in Pr is significant due to 

the fact that Pr increases in 2 ways either by increasing the size of the nanoparticles or by increasing the 
viscosity of the base fluid which causes a decrease in the conduction phenomenon to shorten the thermal 
boundary layer thickness and the heat transfer is found to be smaller for larger values of Pr. In contrast, 
increasing values of N show a substantial increase in the thermal conductivity of the nanofluid and hence 
   increases for increasing values of N [19]. Figure 8 shows that    increases with increasing 

values of Mexp when ε < 1 while it decreases in the case of ε > 1. From this figure, it is noticed that the 
thermal boundary layer thickness is not much influenced by the larger values of Mexp when ε > 1. 

 

 
Figure 4 Temperature profiles against   for different values of Nb. 
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Figure 5 Temperature profiles against   for different values of Nt. 

 
 

 
Figure 6 Temperature profiles against   for different values of N. 
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Figure 7 Temperature profiles against   for different values of Pr. 

 
 

 
Figure 8 Temperature profiles against   for different values of Mexp. 

 
 

Figures 9 - 13 are prepared to study the effects of different embedded flow parameters on 
concentration profiles   . Figures 9 - 12 show that    decreases with increasing values of Nb, Le 

and N whereas it increases for increasing values of Nt. Figure 13 illustrates that for the increasing values 
of Mexp,    increases when ε < 1 while it decreases when ε > 1. Here, it is important to note that the 

increasing values of Mexp shows minimal changes in    and    (Figures 8 and 13). In addition, the 

above discussed figures show that the momentum, thermal and concentration boundary layer thicknesses 
are greater when ε < 1 compared to ε > 1. 
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Figure 9 Concentration profiles against   for different values of Nb. 

 

 
Figure 10 Concentration profiles against   for different values of Nt. 
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Figure 11 Concentration profiles against   for different values of N. 

 
 

 
Figure 12 Concentration profiles against   for different values of Le. 
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Figure 13 Concentration profiles against   for different values of Mexp. 

 
 
Conclusions 

In the present article the radiation effect on MHD stagnation-point flow of a nanofluid over an 
exponentially stretching sheet is investigated. The governing nonlinear partial differential equations are 
solved numerically by using the Keller-box method. An analysis is made through the graphical and 
tabulated data for the flow of heat and mass transfer in the nanofluid when the free stream velocity is 
equal, greater and less than the stretching velocity. This study reveals the following trends; 

1) The velocity profiles coincide with each other if 1  and results in a degenerate inviscid flow 
where the stretching matches the conditions at infinity. 

2) The external stream velocity increases compared to the stretching velocity and the momentum 
boundary layer thickness shortens when 1  whereas an inverted boundary layer structure is found 
when 1 . 

3) Increasing values of Mexp has a minimal influence on the momentum, thermal and concentration 
boundary layers in the case when ε > 1. 
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