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Abstract 

The Southern Oscillation Index (SOI) has been used as a predictor of variables associated with 
climatic data, such as rainfall and temperature, and is related to the El Nino and La Nina phenomena, also 
called the El Nino Southern Oscillation (ENSO). The present study aims to describe the characteristics of 
the SOI between 1876 and 2014 using statistical methods. The graph of the cumulative monthly SOI in 
the period 1876 - 2014 shows that the data can be divided into 4 periods. The first period, from 1876 to 
1919, shows no trend. An increasing trend is apparent in the second period from 1920 until 1975, while a 
decreasing trend is apparent in the third period, 1976 to 1995. In the last period, between 1996 and 2014, 
the SOI appears fairly stable. In order to investigate those trends, the linear regression and autoregressive 
(AR) model have been fitted. For the linear regression model, the outcome, SOI, is regressed against 
boxcar function, where the functions model the trends of the SOI. An autoregressive process is used to 
account for serial correlation in the residuals. The conclusion is that the SOI is quite similar to a random 
noise process. 

Keywords: Autoregressive model, boxcar function, serial correlation, Southern Oscillation Index, white 
noise 
 
 
Introduction 

The southern oscillation (SO) is normally identified by the southern oscillation index (SOI) [1], that 
is, the large-scale fluctuations of the Mean Sea Level Pressure (MSLP) in the tropical Pacific between 
Tahiti and Darwin, Australia. The SOI is expressed as a number which ranges from about −30 to +30. 
Prolonged periods of negative SOI values are called El Ni𝑛�o events, where air pressure is below-normal 
at Tahiti and above-normal at Darwin. The opposite condition occurs when there are prolonged periods 
with strong positive SOI values, called La Ni𝑛�a events. Those events are also called El Nino Southern 
Oscillation (ENSO) events [2-4]. 

The SOI time series is useful for research into climatic data. There are several studies on the 
relationship between SOI and rainfall (e.g. Hadiani et al. [5]; Tigona and de Freitas [6]), as well as SOI 
and temperature (e.g. Jones and Trewin [7]; Halpert and Ropelewski [8]). Some studies have indicated 
that positive values of SOI correlate with above average rainfall and negative values of SOI correlate with 
below average rainfall, for example, in Australia (Stone and Auliciems [9]) and Ghana (Adiku and Stone 
[10]), whereas the correlation between SOI and rainfall was shown to be weaker in Western Australia 
(Carberry et al. [11]). In addition, Carbone et al. [2] reported that the total ozone in southern Brazil 
correlated with SOI, such that a reduction in total ozone occurred during El Ni𝑛�o episodes (negative SOI) 
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and an increase in ozone occurred during La Ni𝑛�a episodes (positive SOI) from 1997 to 2003. On the 
other hand, Al-Zuhairi et al. [12] studied the correlation between temperature and SOI over Iraq, where 
there was no relationship detected in the period from 1900 to 2008. 

That “the weather is not static”, Carberry et al. [11], implies that the SOI is also continuously 
fluctuating. The SOI index is calculated using a moving 30-day average in order to try to eliminate some 
Noise, or small, random changes. A section of these data is illustrated in Figure 1, which shows the 
monthly average SOI from 1876 to 2014. 
 
 

 
 
Figure 1 The variation of SOI from 1876 to 2014. 
 
 

The graph does not show the trend of SOI because the data fluctuate. However, when we look at the 
graph of the cumulative SOI values in Figure 2, we can see an apparent trend from which Watts [13] 
deduced that “...from 1920 went into a long La Nina-dominate trend that ended with the Great Pacific 
Climate Shift of 1976” and “The subsequent El Nino-dominated trend from 1976 to 1995 was almost 3 
times as fast as the rise”. Thus, the focus of this paper is to evaluate the evidence for these claims, using 
appropriate scientific methods. 
 
 

 
Figure 2 Cumulative monthly of SOI. 
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The data and methodology used in this study are described in the following section. Results and 
discussion are then presented, and summarized in section 4. 
 
Materials and methods 

Data 
The data of the present study were downloaded from the Australian Government Bureau of 

Meteorology website, http://www.bom.gov.au/climate/current/soihtm1.shtml. The data are the average 
monthly SOI calculated over 139 years, so that there are 1,664 observations from the year 1876 to 2014. 
There are several methods used to calculate the SOI; the method used by the Australian Bureau of 
Meteorology is the Troup SOI [14] (see Australian Government Bureau of Meteorology [15]). 
 

Methodology 
The null hypothesis of this analysis is that the data are just noise, and in turn, the fluctuations in the 

SOI are random. In order to test this hypothesis, firstly, the scientific approach involves fitting an 
appropriate model to the data, and then applying an appropriate statistical test of the null hyphothesis, 
resulting in a p-value. The p-value is the probability that a data confuguration is at least as unusual as that 
observed could have arisen purely by chance, that is, assuming that the null hypothesis is true. By 
convention, p-values smaller than 0.05 provide sufficient evidence to reject the null hypothesis. 

The first model fitted to the data is a linear regression model (see, Gill [16]; Venables and Ripley 
[17]); taking the formulation below, Eq. (1); 
 

titit zxbby ++= 0 .                 (1) 
 

In this model yt represent the SOI for month t where t equals 1 for January 1876, while xit represent 
boxcar function (see, Weisstein [18]) taking the values of 1 on intervals starting with a changing point 
and 0 elsewhere. The zt constitute successive values which may be a series of auto-correlated normally-
distributed errors (noise). 

For a time series [19], the residuals zt are often called the noise, and the model which does not 
include the noise is called the signal. If the residuals arise from uncorrelated errors, the noise is called 
white noise; otherwise, it is coloured. A commonly implemented model for coloured noise follows an 
autoregressive (AR) process. The AR model takes the form; 
 

∑ += −i tstit wzaz
i

                 (2) 

 
where wt is white noise. This means that each value of zt is expressed as a linear combination of previous 
values at specified lags (s1, s2, s3, etc.) plus an independent white noise series. 

The linear regression model, which assumes independent errors using the function lm() in R [20], is 
used to determine the number of parameters in the AR model. The validity of a model can be checked by 
using the acf() function in R to plot the auto-correlation function (ACF) of the zt Eq. (1). The pacf() 
function, the partial auto-correlation function (PACF) of the residuals, indicates which lagged terms need 
to be included in the AR model Eq. (2) to ensure that the wt component represents white noise. The 
function arima() is used to analyse an AR model with the same predictor as in the linear regression model 
Eq. (1). From the AR model, the p-values of each lag are considered; these should be significant (< 0.05), 
for all lagged terms. Finally, the Analysis of Variance (ANOVA) procedure is used to test the predictor 
from the final model to confirm that at least one of the parameters from Eq. (1) is not equal to zero. 
 
Results and discussion 

The cumulative data from 1876 to 2014 are shown in Figure 3, and the patterns suggest 4 periods. 
The first period from 1876 to 1919 seems to show no trend. An increasing trend is apparent between the 
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years 1920 and 1975, followed by a decreasing trend between the years 1976 and 1995. Again, it appears 
that there is no trend in the period from 1996 to 2014. 
 
 

 
Figure 3 The 4 periods of the data. 
 
 

The same statistical methods are applied to 3 subsets of the raw data. The first series includes all the 
data, from 1876 to 2014. The second series includes the data from 1920 to 2014, while the third series 
includes the data from 1920 to 1995. The results from the analyses of the data from the 3 different periods 
are presented in the next section. 

 
Analysis of 4 periods of data 
Firstly the 4 periods are analysed using the linear model on 3 boxcar functions. The first boxcar 

function takes a value of 1 starting at the changing point during the year 1920 to 1975 and 0 elsewhere 
(x1), the second boxcar function takes a value of 1 during the year 1976 to 1995 and 0 elsewhere (x2) and 
the last boxcar function takes a value of 1 during the year 1996 to 2014 and 0 elsewhere (x3). 

Table 1 shows the coefficient of parameters b0, b1, b2, and b3 from the linear model when b0, b1, b2, 
and b3 refer to the slopes of the first, second, third, and last period, respectively. The model indicates that 
the estimates of the coefficients of b0 and b3 are not statistically significant, but those of for b1 and b2 are 
significant, with p-values less than 0.05. In other words, there is no significant trend in either the first or 
fourth period, but there is a significant increasing trend in the second period, (b1 = 1.373, p-value = 0.023) 
and a decreasing trend in the third period, (b2 = −4.045, p-value < 0.001). 
 
 
Table 1 The coefficient of parameters from linear model for 4 periods. 
 

Parameters Coefficients SE t-value P-value 

b0 0.037 0.450 0.081 0.935 
b1 1.373 0.601 2.284 0.023 
b2 -4.045 0.804 -5.028 < 0.001 
b3 1.130 0.814 1.389 0.165 

The p-value of ANOVA test is < 0.001 
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The ACF graph of the residuals from the linear regression model above shows that the data are 
highly serially correlated, and the PACF graph suggests the correlation of terms at lags 1, 2 and 3 months  
(Figure 4). 
 
 

 
Figure 4 ACF graph (left panel) shows serial correlation and PACF graph (right panel) shows lagged 
terms of serial correlation from the linear model for 4 periods. 
 
 

Then, these lagged terms are included in the function arima(), giving the results as shown in Table 
2. As all AR terms at lags 1, 2, and 3 are statistically significant, we conclude we have derived an 
appropriate model. 
 
 
Table 2 The result from AR(3) for 4 periods. 
 

Parameters Coefficients SE P-value 
ar1 0.467 0.024 < 0.001 
ar2 0.168 0.027 < 0.001 
ar3 0.095 0.024 < 0.001 
b0 -0.083 1.249 0.947 
b1 1.645 1.652 0.319 
b2 -4.142 2.185 0.058 
b3 1.367 2.234 0.541 

The p-value of ANOVA test is 0.078 
 
 
The ACF graph from this model in the right panel of Figure 5 indicates that successive values wt 

are not correlated, and the graph of the PACF in the right panel of Figure 5 shows that the model fits the 
data quite well. However, the p-value from the ANOVA test for parameters b0, b1, b2, and b3 is 0.078, 
indicating that there is insufficient evidence against the null hypothesis, and that the coefficients of each 
parameter may indeed equal zero. It can be interpreted that there is no trend for all periods, which is in 
accordance with the p-value of more than 0.05 for those 4 parameters, as shown in Table 2. 
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Figure 5 ACF graph in the left panel and PACF graph in the right panel from AR(3) for 4 periods. 
 
 

Analysis of 3 periods of data 
Next, we apply the same method as above, but only include the data from 3 periods, from 1920 to 

2014, which includes the data from the second, third, and fourth periods, as shown in Figure 3. The first 
period is presumed to have no trend. In this analysis, 2 boxcar functions are considered, that is, during the 
year 1976 to 1995 (x1) and 1996 to 2015 (x2). Table 3 shows the estimated coefficients of the paramters 
b0, b1, and b2 from the linear model. These results are consistent with those we found from the previous 
analysis, and shows significant increasing and decreasing trends in the second and third periods 
respectively, and no trend in the fourth period. After the ACF and PACF graphs presented in Figure 6 are 
examined, it is again apparent that 3 lagged terms should be in the AR model. 

 
 

Table 3 The coefficient of parameters from the linear model for 3 periods. 
 

Parameters Coefficients SE t-value P-value 

b0 1.409 0.373 3.779 < 0.001 
b1 -5.417 0.727 -7.452 < 0.001 
b2 -0.242 0.736 -0.329 0.742 

The p-value of ANOVA test is < 0.001 
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Figure 6 ACF graph (left panel) shows serial correlation and PACF graph (right panel) shows lagged 
terms of serial correlation from the linear model for 3 periods. 
 
 

The p-value from the ANOVA test of parameters b1, b2, and b3 from the subsequent AR(3) model is 
0.037, indicating that there is at least one parameter not equal to zero. The results of this model are shown 
in Table 4, and we see there is insufficient evidence of a trend in the period 1920 to 1975, but there has 
been a significant decreasing trend between 1976 and 1995, and there is no trend in the period 1996 to 
2014. 

 
Table 4 The coefficient of parameters from AR(3) for 3 periods. 
 

Parameters Coefficients SE P-value 

ar1 0.420 0.029 < 0.001 
ar2 0.173 0.031 < 0.001 
ar3 0.151 0.029 < 0.001 
b0 1.442 1.096 0.188 
b1 -5.675 2.039 0.005 
b2 -0.159 2.122 0.940 

The p-value of ANOVA test is 0.037 
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Figure 7 ACF graph in the left panel and PACF graph in the right panel from AR(3) for 3 periods. 
 
 

Analysis of 2 periods of data 
In this final analysis, only the data from the second and third periods, between 1920 and 1995, are 

considered, while the first and last periods are assumed to be constant. One boxcar function starting at the 
change point, that takes the value of 1 in the period 1976 to 1995 and 0 elsewhere (x1), is the determinant 
in the linear model. Table 5 shows that there are significant upward trends and downward trends in the 
second and third periods, respectively. The result from PACF graph presented in Figure 8 also suggests 
that 3 lagged terms should be the order in the AR model. 
 
 
Table 5 The coefficient of parameters from the linear model for 2 periods. 
 

Parameters Coefficients SE t-value P-value 
b0 1.409 0.363 3.888 < 0.001 
b1 -5.417 0.707 -7.667 < 0.001 

The p-value of ANOVA test is < 0.001 
 
 

 
 
Figure 8 ACF graph (left panel) shows serial correlation and PACF graph (right panel) shows lagged 
terms of serial correlation from the linear model for 2 periods. 
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The ANOVA test of the parameters b1 and b2 from the AR(3) model is 0.021. Thus, we can 
conclude there is no significant trend in the second period, and a significant decreasing trend in the third 
period (Table 6). 
 
 
Table 6 The coefficient of parameters from AR(3) for 2 periods. 
 

Parameters Coefficients SE P-value 
ar1 0.437 0.033 < 0.001 
ar2 0.139 0.035 < 0.001 
ar3 0.158 0.033 < 0.001 
b0 1.433 1.038 0.168 
b1 -5.437 1.961 0.006 

The p-value of ANOVA test is 0.021 
 
 

 
 
Figure 9 ACF graph in the left panel and PACF graph in the right panel from AR(3) for 2 periods. 
 
 

Accumulating time series data over time can give a misleading impression, suggesting that a purely 
random process appears to have an informative structure. As the results have shown, there is insufficient 
evidence to conclude that the fluctuations in the SOI are due to anything other than random noise. 
Likewise, the study of Wu and Huang [21] used the SOI as noisy data, to illustrate their developed 
method. However, some researches have suggested that the SOI might be used to predict rainfall in the 
Fiji Islands. (Dennett and et al. [22]), southern Ghana (Adiku and Stone [10]), and some parts of Australia 
(Chiew and et al. [23]), and also predict itself (Chu and Katz [24]), indicating that some other correlation 
structure may be involved with other variables. 

Given that the selected periods of possible changes are based on the data, the p-value is not strictly 
correct, since the null hypothesis is postulated from the same data used to test it. Even so,though we could 
test the null hypotheses from different periods with this study to define the boxcar function on the data by 
other criteria, such as using the period of every 10, 20 or 30 years, etc., to determine whether or not the 
variability in SOI is just a random process. An appropriate method needs to be based on sound statistical 
methodology; it is almost impossible to duplicate this method with the same data, because the SOI signal 
is unique. We could use other methods, including bootstrapping, to test the null hypotheses. However, in 
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this study, we emphasize that the cumulative data has appeared to show some trends, but that we do not 
have sound statistical evidence to verify this. 
 
Conclusions 

It seems reasonable that the cumulative monthly SOI data can be divided into 4 periods, comprising 
the years 1876 - 1919, 1920 - 1975, 1976 - 1995, and 1996 - 2014. We have investigated the apparent 
increasing and decreasing trends seen in the second and third periods, respectively. To examine these 
trends, the 3 data sets have been analysed using the linear regression and autoregressive model on the 
boxcar function. The results from this study show that the appropriate autoregressive model for each of 
the 3 data sets is AR(3). For the model which included only the data from periods 2 and 3, we found no 
significant trend in the period 1920 to 1975, but a significant decreasing trend in the period 1976 to 1995. 
However, the result from the analysis of the data including all 4 periods shows no evidence of trend for 
any periods. Consequently, the evidence suggests that the fluctuations in the SOI seem to be similar with 
a random noise process. 
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