Flow and Heat Transfer in MHD Dusty Nanofluid Past a Stretching/Shrinking Surface with Non-Uniform Heat Source/Sink

Naramgari SANDEEP¹, Chalavadi SULOCHANA¹ and Banglore Rushi KUMAR²,*

¹Department of Mathematics, Gulbarga University, Gulbarga 585106, India
²Fluid Dynamics Division, VIT University, Vellore 632014, India

(*Corresponding author’s e-mail: rushikumar@vit.ac.in)

Received: 26 April 2015, Revised: 2 October 2015, Accepted: 18 November 2015

Abstract

The present study concerns the momentum and heat transfer characteristics of magnetohydrodynamic (MHD) dusty nanofluid flow over a permeable stretching/shrinking surface in the presence of a volume fraction of dust and nanoparticles with non-uniform heat source/sink. We consider 2 types of nanofluids, namely, TiO₂-water and Al₂O₃-water, embedded with conducting dust particles. The governing partial differential equations of the flow and heat transfer are transformed to nonlinear ordinary differential equations by using a similarity transformation and are solved numerically using a Runge-Kutta based shooting technique. The effects of non-dimensional governing parameters on velocity and temperature profiles for both fluid and dust phases are discussed for both stretching and shrinking cases and presented through graphs. Also, skin friction coefficient and heat transfer rate is discussed and presented in tabular form for the 2 dusty nanofluids separately.

Keywords: MHD, dusty nanofluid, stretching/shrinking surface, volume fraction, non-uniform heat source/sink

Nomenclature:

- \(u_x \), \(u_y \) velocity components of fluid phase in \(x \) and \(y \) directions (m)
- \(u_{p_x}, u_{p_y} \) velocity components of dust phase in \(x \) and \(y \) directions (m)
- \(x \) distance along the surface (m)
- \(y \) distance normal to the surface (m)
- \(c_p \) specific heat capacity at constant pressure (J/KgK)
- \(f, F \) dimensionless velocities
- \(T \) temperature of the fluid phase (K)
- \(T_p \) temperature of the particle phase (K)
- \(m \) mass of the particle phase (g)
- \(q' \) non-uniform heat source/sink (W/m³)

Greek Symbols:

- \(\eta \) similarity variable
- \(\beta_T \) volumetric thermal expansion (K⁻¹)
- \(\theta \) dimensionless temperature (K)
- \(\rho_f \) fluid density (Kg/m³)
- \(\nu \) kinematic viscosity (m²/s)
- \(\mu_f \) dynamic viscosity (Ns/m²)
- \(\phi \) nano particle volume fraction (nm)
- \(\phi_d \) dust particle volume fraction (µm or mm)

<table>
<thead>
<tr>
<th>symbol</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u_x)</td>
<td>velocity component in x direction</td>
</tr>
<tr>
<td>(u_y)</td>
<td>velocity component in y direction</td>
</tr>
<tr>
<td>(u_{p_x})</td>
<td>dust velocity component in x direction</td>
</tr>
<tr>
<td>(u_{p_y})</td>
<td>dust velocity component in y direction</td>
</tr>
<tr>
<td>(x)</td>
<td>distance along the surface</td>
</tr>
<tr>
<td>(y)</td>
<td>distance normal to the surface</td>
</tr>
<tr>
<td>(c_p)</td>
<td>specific heat capacity at constant pressure</td>
</tr>
<tr>
<td>(\eta)</td>
<td>similarity variable</td>
</tr>
<tr>
<td>(\beta_T)</td>
<td>volumetric thermal expansion</td>
</tr>
<tr>
<td>(\theta)</td>
<td>dimensionless temperature</td>
</tr>
<tr>
<td>(\rho_f)</td>
<td>fluid density</td>
</tr>
<tr>
<td>(\nu)</td>
<td>kinematic viscosity</td>
</tr>
<tr>
<td>(\mu_f)</td>
<td>dynamic viscosity</td>
</tr>
<tr>
<td>(\phi)</td>
<td>nano particle volume fraction</td>
</tr>
<tr>
<td>(\phi_d)</td>
<td>dust particle volume fraction</td>
</tr>
</tbody>
</table>
Introduction

Momentum and heat transfer characteristics of magnetohydrodynamic MHD flows over a stretching/shrinking surface have vast applications in engineering and applied sciences. Over the past few decades many researchers have investigated the momentum and heat transfer characteristics of either dusty or nanofluids through different channels. Nowadays, low thermal conductivity, in convectional fluids like water, ethylene glycol, oil etc., raises a variety of problems in engineering electronic devices. To overcome these drawbacks and enhance the thermal conductivity in convectional fluids, over the past few decades, many researchers have concentrated on the mixing of nano- or micrometer sized particles in the base fluids. In the present study, we take the initiative to analyze the momentum and heat transfer characteristics of a dusty nanofluid (a nanofluid embedded with dust particles) over a stretching/shrinking surface by considering a volume fraction of dust particles (in μm) and a volume fraction of nanoparticles (in nm). This has potential applications in the fields of industrial engineering, aerospace, aeronautics, medicine, science, and technology, such as in metal and polymer extrusion, chemical processing equipment, exchangers, etc.

Remeli et al. [20] analyzed Marangoni-driven boundary layer flow of a nanofluid by considering suction/injection effects. Zaimi et al. [21] studied nanofluid flow over a permeable stretching/shrinking sheet by considering a 2 phase model. Ferdows et al. [22] discussed the heat transfer characteristics of boundary layer nanofluid flow with viscous dissipation over an unsteady stretching sheet. The unsteady stagnation point flow of a nanofluid over a stretching surface was illustrated by Malyand et al. [23]. Rohni et al. [24] analyzed the momentum and heat transfer characteristics of a nanofluid past an exponentially shrinking vertical sheet by considering suction effects. Subhashini et al. [25] presented dual solutions for mixed convection flow of a nanofluid near the stagnation point region over an exponentially stretching/shrinking sheet. Krishnamurthy et al. [26] discussed the MHD and heat transfer of nanofluid with fluid particle suspension. Further, Krishnamurthy et al. [27] studied the effects of chemical reaction on MHD boundary layer flow and melting heat transfer of non-Newtonian nanofluid. Stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet was discussed by Gorla and Gireesha [28]. Recently, the researchers [29-31] analyzed the heat and mass transfer characteristics of magnetic flows through different channels. Abbas et al. [32] discussed the influence of thermal radiation on MHD flow over a stretching cylinder in porous medium. Javid and Mustafa [33] analyzed the stagnation flow of an unsteady Wang problem in the presence of suction. Further, Mustafa et al. [34] studied the MHD mixed convection stagnation point flow of a nanofluid over a vertical plate with viscous dissipation.

All the above studies focused on either dusty or nanofluid flows through different channels. To the best of our knowledge, the present study is a new initiative, and no studies have been reported on the momentum and heat transfer characteristics of MHD flow of a dusty nanofluid over a permeable stretching/shrinking surface in the presence of a volume fraction of dust and nanoparticles with non-uniform heat source/sink. We consider TiO_2-water and Al_2O_3-water nanofluids immersed with dust particles. The number density of the dust particles, along with the volume fraction of the dust and nanoparticles, is taken into account.

The boundary layer equations that govern the present flow, as per the above assumptions, are [15,19];
\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \]
\[\rho_{nf}(1-\phi_d) \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = (1-\phi_d) \mu_{nf} \frac{\partial^2 u}{\partial y^2} + KN(u_p - u) - \sigma B_0^2 u, \]
\[u_p \frac{\partial u}{\partial x} + v_p \frac{\partial u}{\partial y} = \frac{K}{m} (u-u_p), \]
\[\frac{\partial u_p}{\partial x} + \frac{\partial v_p}{\partial y} = 0, \]
with the boundary conditions:
\[u = \lambda U (x), \quad v = v_w \text{ at } y = 0, \]
\[u \to 0, u_p \to 0, v_p \to v \text{ as } y \to \infty, \]

Figure 1 Physical model of the problem.

where \((u, v)\) and \((u_p, v_p)\) are the velocity components of the nanofluid and dust phases in the \(x\) and \(y\) directions respectively, \(\phi_d\) is the volume fraction of the dust particles (i.e., the volume occupied by the dust particles per unit volume of mixture), \(\mu_{nf}\) is the dynamic viscosity of the nanofluid, \(K\) is the Stokes resistance, \(m\) is the mass of the dust particle, \(N\) is the number density of the dust particles, \(\rho_{nf}\) is the density of the nanofluid, \(\sigma, B_0\) are the electrical conductivity and external magnetic field, respectively, and \(\lambda\) is the stretching/shrinking parameter, with \(\lambda > 0\) for a stretching surface and \(\lambda < 0\) for a shrinking surface. It is assumed that the surface is stretched or is shrunk with the velocity...
Flow and Heat Transfer in MHD Dusty Nanofluid

Naramgari SANDEEP et al.

http://wjst.wu.ac.th

\[U_w(x) = cx, \quad c > 0 \] is constant, and \(v_w \) is the suction or injection velocity, with \(v_w < 0 \) for suction and \(v_w > 0 \) for injection. The nanofluid constants are given by;

\[(\rho c_p)_{nf} = (1-\phi)(\rho c_p)_f + \phi(\rho c_p)_s, \]

\[k_{nf} = \frac{(k_s + 2(k_f - k_s))}{(k_s + 2(k_f - k_s))} + \phi(k_f - k_s), \quad \mu_{nf} = \frac{\mu_f}{(1-\phi)^{2.5}}, \quad \rho_{nf} = (1-\phi)\rho_f + \phi\rho_s, \]

where \(\phi \) is the volume fraction of the nanoparticles. The subscripts \(f \) and \(s \) refer to fluid and solid properties, respectively.

For a similarity solution, we introduce the following similarity transformation;

\[u = cx^\prime f'(\eta), \quad v = -c^{-1/2} f^{-1/2} f(\eta), \quad \eta = v^{-1/2} c^{1/2} y, \]

\[u_p = cxF'(\eta), \quad v_p = -c^{-1/2} c^{1/2} F(\eta), \]

where Eq. (7) identically satisfies Eq. (1) and Eq. (4). Now, using Eqs. (5) - (7) and Eq. (15), Eq. (2) and Eq. (3) reduce to;

\[\frac{1-\phi_d}{(1-\phi)^{2.5}} f'' = (1-\phi) \left(1 + \phi \left(\frac{\rho_s}{\rho_f} \right) \right) \left(f'^2 - f'' \right) + \alpha \beta (F' - f') - Mf' = 0, \]

\[F'^2 - FF'' + \beta (F' - f') = 0, \]

with the transformed boundary conditions;

\[f'(\eta) = \lambda, \quad f(\eta) = S \quad \text{at} \quad \eta = 0, \]

\[f'(\eta) = 0, \quad F'(\eta) = 0, \quad F(\eta) = f(\eta) \quad \text{as} \quad \eta \to \infty, \]

where \(\alpha = Nm / \rho_f \) is the mass concentration of the dust particles, \(\beta = K / cm \) is the fluid particle interaction parameter for the velocity, \(M = \sigma B^2_0 / c\rho_f \) is the magnetic field parameter, and \(v_w = -\sqrt{cv} S \), where the constant parameter \(S \) corresponds to suction for \(S > 0 \) and injection for \(S < 0 \).

Heat transfer analysis

The governing boundary layer heat transport equations for dusty nanofluid are:

\[(\rho c_p)_{nf} \left(u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} \right) = k_{nf} \frac{\partial^2 T}{\partial y^2} + \frac{N_i(c_p)_f}{\tau_f} (T_p - T) + \frac{N_i}{\tau_v} (u_p - u)^2 + q'', \]

Walailak J Sci & Tech 2017; 14(2) 5
where \(T \) and \(T_p \) are the temperatures of the nanofluid and dust particles, respectively, \(k_{nf} \) is the effective thermal conductivity of the nanofluid, \((c_p)_f, c_m \) are the specific heat levels of the fluid and dust particles, respectively, \(N_i = Nm \) is the density of the particle phase, \(\tau_T \) is the thermal equilibrium time, and \(\tau_v \) is the relaxation time of the dust particle. The space and temperature dependent heat generation/absorption (non-uniform heat source/sink) \(q^{m} \) is defined as per Sandeep and Sulochana [30]:

\[
q^{m} = \left(k_f U_w(x) \right) \left(A'(T_w - T_x) f'(\eta) + B'(T - T_x) \right),
\]

where \(A' \) and \(B' \) are parameters of the space- and temperature-dependent internal heat generation/absorption. The positive and negative values of \(A' \) and \(B' \) represent the heat generation and absorption, respectively.

We consider temperature boundary conditions in order to solve Eqs. (11) - (13) as:

\[
\begin{align*}
T &= T_w = T_x + A(x/l)^2 \quad \text{at} \quad y = 0, \\
T &\to T_x, \quad T_p \to T_x \quad \text{as} \quad y \to \infty,
\end{align*}
\]

where \(T_w, T_x \) are the temperatures near the wall and far away from the wall, respectively, and \(l = v_f^{1/2} \rho_c^{-1/2} > 0 \) is a characteristic length.

We now introduce the following non-dimensional variables to obtain the similarity solutions of Eqs. (11) - (13):

\[
\begin{align*}
\theta(\eta) &= \frac{T - T_x}{T_w - T_x}, \\
\theta_p(\eta) &= \frac{T_p - T_x}{T_w - T_x},
\end{align*}
\]

where \(T - T_x = A(x/l)^2 \theta(\eta), A > 0, \)

Using Eqs. (6), (7), (14), and (15) in Eqs. (11) - (13), we obtain the ordinary differential equations:

\[
\begin{align*}
\frac{1}{\Pr} &\left[\frac{k_{nf}}{k_f} \right] \frac{\theta'}{1 - \phi + \phi(\rho c_p)_f/(\rho c_p)_f} \theta'' - (2f'\theta - f\theta') + \frac{1}{1 - \phi + \phi(\rho c_p)_f/(\rho c_p)_f} \left[\alpha \beta' (\theta_p - \theta) + Exc' (F - f')^2 \right] \\
+ \frac{1}{\Pr} &\left[\frac{1}{1 - \phi + \phi(\rho c_p)_f/(\rho c_p)_f} \right] \left[A' f' + B' \theta \right] = 0.
\end{align*}
\]
Flow and Heat Transfer in MHD Dusty Nanofluid

Naramgari SANDEEP et al.

http://wjst.wu.ac.th

\[2F'\theta_p - F\theta''_p + \gamma \beta_f (\theta_p - \theta) = 0 \]

(17)

with the transformed boundary conditions:

\[\theta(\eta)=1 \text{ at } \eta = 0 \]
\[\theta(\eta)=0, \theta'_p(\eta)=0 \text{ as } \eta \to \infty \]

(18)

where \(\text{Pr} = v_f / \alpha_f \) is the Prandtl number, \(\beta_f = 1/c \tau_f \) is the fluid particle interaction parameter for temperature, \(Ec = c f^2 / A(c_f) \) is the Eckert Number, and \(\gamma = (c_p)_f / c_m \) is the ratio of the specific heat of the fluid to dust particles.

For engineering interests, the skin friction coefficient \(C_f \) and the local Nusselt number \(Nu_x \) are defined as:

\[C_f = \frac{\tau_w}{\rho_f u_w^2}, Nu_x = \frac{xq_w}{k_f(T_w - T_x)} \]

(19)

where the surface shear stress \(\tau_w \) and the surface heat flux \(q_w \) are given by;

\[\tau_w = \mu_{nf} \left(\frac{\partial u}{\partial y} \right)_{y=0}, q_w = -k_{nf} \left(\frac{\partial T}{\partial y} \right)_{y=0} \]

(20)

Using non-dimensional variables, we obtain;

\[C_f \text{ Re}_x^{1/2} = \frac{1}{(1-\phi)^{3/2}} f''(0), Nu_x \text{ Re}_x^{-1/2} = -\frac{k_{nf}}{k_f} \theta'(0) \]

(21)

where \(\text{Re}_x = u_w x / v_f \) is the local Reynolds number.

Numerical procedure

The system of nonlinear ordinary differential equations in Eqs. (8), (9) and Eqs. (16), (17), with the boundary conditions in Eq. (11) and Eq. (18), respectively, are solved numerically using a Runge-Kutta based shooting technique (Sandeep and Sulochana [30]). We considered \(f = x_1, f' = x_2, f'' = x_3, F = x_4, F' = x_5, \theta = x_6, \theta' = x_7, \theta'_p = x_8, \theta'_p = x_9 \), Eqs. (8), (9) and Eqs. (16), (17) are transformed into systems of first order differential equations. Subject to the following initial conditions;

\[x_1(0) = S, x_2(0) = \lambda, x_3(0) = s_1, x_4(0) = -S, x_5(0) = s_2, x_7(0) = s_3, \ldots \text{etc.} \]

(22)

We assumed the unspecified initial conditions in Eq. (22), and the transformed first order differential equations are integrated numerically as an initial valued problem at a given terminal point. We checked the accuracy of the assumed missing initial condition by comparing them with the calculated...
value of the different variable at the terminal point. The calculations are carried out using the Matlab programme.

Results and discussion

The system of nonlinear ordinary differential equations in Eqs. (8), (9) and Eqs. (16), (17), with the boundary conditions in Eq. (11) and Eq. (18), respectively, are solved numerically using a Runge-Kutta based shooting technique. The results show the effects of non-dimensional governing parameters, namely magnetic field parameter (M), volume fraction of dust particles (ϕ_d), volume fraction of nanoparticles (ϕ), mass concentration of dust particles (α), fluid particle interaction parameter for velocity (β), fluid particle interaction parameters for temperature (β_T), and non-uniform heat source/sink parameters (A' and B') on velocity and temperature profiles, for both fluid and dust phases and for stretching and shrinking cases, and are presented graphically. Also, skin friction coefficient and Nusselt number are discussed and presented in tabular form. For numerical results, we used $A' = B' = \alpha = \beta = 0.5$, $\phi_d = \phi = 0.1$, $Pr = 6.2$, $\beta_T = 0.2$, $Ec = 0.2$, $\gamma = 0.01$. These values were common for the entire study, except for the varied values in the respective figures. This study explores a detailed analysis of the momentum and heat transfer characteristics of TiO$_2$-water and Al$_2$O$_3$-water nanofluids embedded with dust particles. For the momentum and heat transfer behaviour, we highlighted the results in indexed figures. The thermophysical properties of the base fluid and the particles are depicted in Table 1.

Table 1 Thermophysical properties of base fluid and different nanoparticles.

<table>
<thead>
<tr>
<th></th>
<th>ρ (Kg m$^{-3}$)</th>
<th>c_p (J Kg$^{-1}$ K$^{-1}$)</th>
<th>k (Wm$^{-1}$ K$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water (H_2O)</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
</tr>
<tr>
<td>Titanium oxide (TiO$_2$)</td>
<td>4250</td>
<td>686.2</td>
<td>8.9538</td>
</tr>
<tr>
<td>Aluminium oxide (Al$_2$O$_3$)</td>
<td>3970</td>
<td>765</td>
<td>40</td>
</tr>
</tbody>
</table>

Figures 2 - 5 depict the effect of magnetic field parameter (M) on velocity and temperature profiles of the fluid and dust phases for stretching and shrinking cases. From Figures 2 and 3, an increase in magnetic field parameter decreases the velocity profiles of both dusty nanofluids in the stretching case, but this is reversed in the shrinking case. Generally, increases in magnetic field generate an opposite force to the flow, called the Lorentz force. This force may slow down the velocity of the fluid in the stretching case, but it may act in the reverse manner in the shrinking case. This is the reason we notice an increase in velocity profiles by an increase in magnetic field in the shrinking case. Similar results are observed from Figure 5 but, from Figure 4, it is interesting to note that increase in magnetic field parameter enhances the temperature profiles of the fluid phase in the stretching surface. We also observe a significant hike in temperature profiles of the Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid.

Figures 6 - 9 illustrate the velocity and temperature profiles of fluid and dust phases over stretching/shrinking surfaces for various values of volume fractions of nanoparticles (ϕ). From Figure 6 and Figure 7, it is observed that increasing the value of volume fraction of nanoparticles increases the velocity profiles of the fluid and dust phases in the stretching surface and decreases in the shrinking surface. From Figure 6, in the shrinking case, we notice an interesting result, where the influence of nanoparticle volume fraction is initially higher on Al$_2$O$_3$-water dusty nanofluid, but for higher values of ϕ, we
see that TiO$_2$-water dusty nanofluid is more affected by ϕ, compared with Al$_2$O$_3$-water dusty nanofluid. It is evident from Figures 8 and 9 that increases in volume fraction of nanoparticles enhances the temperature profiles of both fluid and dust phases in the stretching case, but enhancement in ϕ decreases the temperature profiles in the shrinking case. This phenomenon can be explained by the fact that increases in ϕ cause improvement in thermal conductivity. This enhancement in thermal conductivity increases the thermal and velocity boundary layer thicknesses.

Figures 10 - 13 show the effect of volume fraction of dust particles (ϕ_d) on velocity and temperature profiles of the fluid and dust phases for stretching and shrinking cases. It is clear from Figures 10 - 11 that the velocity profiles of fluid and dust phases decrease in the stretching sheet, and increase in the shrinking sheet, by the increase in the volume fraction of dust particles. This is due to the fact that, if the volume occupied by the dust particles is more, it then reduces the momentum boundary layer thickness in the stretching surface. It is evident from Figures 12 - 13 that increase in the value of ϕ_d enhances the temperature profiles of the fluid phase and reduces the temperature profiles in the dust phase for the stretching case. In the shrinking case, we notice the opposite results. It is important to mention here that the increase/decrease in temperature profiles by the increase/decrease in volume fraction of dust particles is significantly less compared with the increase/decrease in the volume fraction of nanoparticles. Also, we notice an interesting result where enhancement in the value of volume fraction of nanoparticles uniformly improves temperature profiles in both dusty nanofluids, but increase in volume fraction of dust particles significantly improves the temperature profiles of Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid. It is evident that the volume fraction of nanoparticles is more effective in enhancing the thermal boundary layer thickness compared with the volume fraction of dust particles. We clearly observe all these results from Figures 8 and 12.

The effect of mass concentration of dust particles (α) on the velocity and temperature profiles of the fluid and dust phases for stretching and shrinking cases is presented in Figures 14 - 16. It is observed from Figures 14 and 15 that increase in mass concentration of dust particles decreases the velocity profiles of the fluid and particle phase for the stretching case. This is reversed in the shrinking case. Generally, increase in mass concentration of dust particles reduces heat transfer rate, which indirectly decreases the velocity boundary layer thickness in the stretching case. From Figure 16, we see that the enhanced value of α increases the temperature profiles of the fluid phase for the stretching case, and the opposite results are found in the shrinking case. We notice significant improvement in temperature profiles of Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid, by increase in α. Figures 17 - 19 display the effect of fluid particle interaction parameter for velocity (β) on the velocity and temperature profiles of the fluid and dust phases for stretching and shrinking cases. It is clear from these figures that increase in fluid particle interaction parameter for velocity depreciates the velocity and temperature profiles for fluid phase and improves the velocity and temperature profiles for dust phase in the stretching case. While coming to the shrinking case, we find increase in velocity profiles for fluid phase, and decrease in temperature and velocity profiles for fluid and particle phase. These may be due to an increase in fluid particle interaction, reducing the momentum and thermal boundary layer thickness for fluid phase and increasing for particle phase. Physical interaction of particles with the fluid dominates the velocity profiles of the base fluid. During this time, a force generates opposite to the flow field of the base fluid. This force slows down the velocity profiles until the particle phase reaches the fluid phase. The reason for increasing temperature profiles for dust phase is due to improved thermal conductivity by increase in interaction of the dust particles with nanoparticles.

The influence of fluid particle interaction parameter for temperature (β_T) on temperature profiles is shown in Figure 20. An increase in fluid particle interaction parameter for temperature enhances the temperature profiles in the stretching case, but this is reversed in the shrinking case. Physically, an increase in fluid particle interaction enhances the thermal conductivity of the flow. It is found that
increase in β_{γ} helps to gradually enhance the temperature profiles of Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid in the stretching case, but TiO$_2$-water dusty nanofluid shows better performance, with a hike in temperature, in the shrinking case.

Figures 21 and 22 reveal the effect of non-uniform heat source/sink parameters (A^* and B^*) on temperature profiles of the fluid phase for stretching and shrinking cases. Increases in A^* and B^* enhance the temperature profiles in the stretching case. Increase in A^* shows depreciation in temperature profiles in the shrinking case, but B^* helps to improve the temperature profiles in the shrinking case. It is evident that, for smaller values of A^* and B^*, depreciation in temperature profiles is observed. This means the negative values of A^* and B^* act as heat observers, and positive values act as generators.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Variation in $f'(0)$ and $-\theta'(0)$ for Al$_2$O$_3$-water dusty nanofluid at $\lambda = 1$.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>ϕ</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Tables 2 and 3 shows the influence of non-dimensional governing parameters on skin friction coefficient $f'(0)$ and Nusselt number $-\theta'(0)$ for Al$_2$O$_3$-water and TiO$_2$-water dusty nanofluids. Increase in magnetic field parameter and volume fraction of dust particles depreciate the friction factor and improve the heat transfer rate for both dusty nanofluids. A rise in the value of volume fraction of nanoparticles increases the skin friction coefficient and reduces the Nusselt number. It is interesting to note that increase in fluid particle interaction parameter for velocity reduces the coefficient of skin friction and enhances the heat transfer rate. Increase in mass concentration of dust particles and fluid particle interaction parameter for temperature decreases the heat transfer rate, and change in the value of fluid particle interaction parameter for temperature does not have any influence on friction factor. The
non-uniform heat source/sink parameters do not have any influence on friction factor, but enhancing the values of A' and B' reduces the Nusselt number. Table 4 shows the comparison of the present study with existing literature. We found an excellent agreement of the present results with the existing literature. This proves the validity of the present results, along with the accuracy of the present numerical technique.

Table 3 Variation in $f''(0)$ and $-\theta'(0)$ for TiO$_2$-water dusty nanofluid at $\lambda = 1$.

<table>
<thead>
<tr>
<th>M</th>
<th>ϕ</th>
<th>ϕ'_d</th>
<th>α</th>
<th>β</th>
<th>β'_T</th>
<th>$A^/B^$</th>
<th>$f''(0)$</th>
<th>$-\theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.388276</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.410004</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>-2.365389</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>-2.582141</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>3.48036</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>-1.945742</td>
<td></td>
<td></td>
<td>-1.716094</td>
<td></td>
<td></td>
<td>2.808655</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>-2.31335</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>-2.053614</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.353093</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>-2.08434</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.353093</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>-2.121814</td>
<td></td>
<td></td>
<td>4.343329</td>
</tr>
</tbody>
</table>

Table 4 Comparison of the results for wall temperature gradient $-\theta'(0)$ in the case of $\beta = \beta'_T = Ec = \phi' = \phi = A^* = B^* = 0$.

<table>
<thead>
<tr>
<th>Pr</th>
<th>Gireesha et al. [19]</th>
<th>Present study</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.72</td>
<td>1.0886</td>
<td>1.0887</td>
</tr>
<tr>
<td>1</td>
<td>1.3333</td>
<td>1.3333</td>
</tr>
<tr>
<td>10</td>
<td>4.7968</td>
<td>4.7969</td>
</tr>
</tbody>
</table>
Figure 2 Velocity profiles of the fluid phase for various values of M.

Figure 3 Velocity profiles of the dust phase for various values of M.
Figure 4 Temperature profiles of the fluid phase for various values of M.

Figure 5 Temperature profiles of the dust phase for various values of M.
Figure 6 Velocity profiles of the fluid phase for various values of ϕ.

Figure 7 Velocity profiles of the dust phase for various values of ϕ.

Blue = TiO$_2$ + water + dust
Red = Al$_2$O$_3$ + water + dust

$\lambda = 1 \ldots \lambda = -1$
Figure 8 Temperature profiles of the fluid phase for various values of ϕ.

Figure 9 Temperature profiles of the dust phase for various values of ϕ.
Figure 10 Velocity profiles of the fluid phase for various values of ϕ_d.

Figure 11 Velocity profiles of the dust phase for various values of ϕ_d.

Walailak J Sci & Tech 2017; 14(2)
Figure 12 Temperature profiles of the fluid phase for various values of ϕ_d.

Figure 13 Temperature profiles of the dust phase for various values of ϕ_d.

Blue = TiO_2 + water + dust
Red = Al_2O_3 + water + dust
Flow and Heat Transfer in MHD Dusty Nanofluid

Naramgari SANDEEP et al.

http://wjst.wu.ac.th

Figure 14 Velocity profiles of the fluid phase for various values of α.

Figure 15 Velocity profiles of the dust phase for various values of α.

Blue=TiO$_2$+water+dust
Red=Al$_2$O$_3$+water+dust
Figure 16 Temperature profiles of the fluid phase for various values of α.

Figure 17 Velocity profiles of the dust phase for various values of β.
Figure 18 Temperature profiles of the fluid phase for various values of β.

Figure 19 Temperature profiles of the dust phase for various values of β.
Figure 20 Temperature profiles of the fluid phase for various values of β_T.

Figure 21 Temperature profiles of the fluid phase for various values of A^*.
Conclusions

In this study, we analyzed momentum and heat transfer characteristics of MHD flow of a dusty nanofluid over a permeable stretching/shrinking surface in the presence of a volume fraction of dust and nanoparticles with non-uniform heat source/sink. We considered TiO$_2$-water and Al$_2$O$_3$-water nanofluids immersed with dust particles. The effects of non-dimensional governing parameters on velocity and temperature profiles for both fluid and dust phases were discussed and presented through graphs. Also, skin friction coefficient and Nusselt number were discussed and presented for 2 dusty nanofluids separately in tabular form. The conclusions of the present study are as follows:

- Fluid particle interaction parameter for velocity has the capability to enhance the heat transfer rate of TiO$_2$-water and Al$_2$O$_3$-water dusty nanofluids for both stretching and shrinking surfaces.
- Increase in volume fraction of dust particles and volume fraction of nanoparticles improves the temperature profiles of both dusty nanofluids. This effect is high on Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid in the stretching surface, and is reversed in the shrinking surface.
- Magnetic field parameter has the tendency to reduce the velocity boundary layer of the fluid phase. Increase in magnetic field parameter helps to enhance the heat transfer rate in the shrinking surface.
- Enhancement in mass concentration of dust particles decreases the friction factor and heat transfer rate in the stretching surface and improves the friction factor, along with Nusselt number, in the shrinking surface.
- A rise in the value of fluid particle interaction parameter for temperature does not have any influence on velocity profiles or skin friction coefficient, but it helps to enhance the heat transfer rate in the shrinking surface.
- Increases in volume fraction of nanoparticles help to uniformly enhance temperature profiles of both dusty nanofluids, but increases in volume fraction of dust particles show significant enhancement in the temperature profiles of Al$_2$O$_3$-water dusty nanofluid, compared with TiO$_2$-water dusty nanofluid, over the stretching surface.

Figure 22 Temperature profiles of the fluid phase for various values of B^*.

22 Walailak J Sci & Tech 2017; 14(2)
The increase/decrease in temperature/velocity profiles of the fluid or dust phases are less affected by enhancement in volume fraction of dust particles, compared with volume fraction of nanoparticles.

The positive values of non-uniform heat source/sink parameters act like heat generators, and negative values act like heat observers.

Al₂O₃-water dusty nanofluid dominated TiO₂-water dusty nanofluid in the stretching case, and TiO₂-water dusty nanofluid overtakes Al₂O₃-water dusty nanofluid in the shrinking case, in both velocity and temperature profiles.

Acknowledgements

The authors wish to express their sincere thanks to anonymous reviewers and editors in improving the manuscript. The First and Second authors acknowledge the UGC for their financial support under the UGC Dr. D.S. Kothari Fellowship Scheme (No.F.4-2/2006 (BSR)/MA/13-14/0026).

References

Flow and Heat Transfer in MHD Dusty Nanofluid

Naramgari SANDEEP et al.

http://wjst.wu.ac.th

